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Model Generalization

Machine learning models are trained to generalize from a finite dataset to new, unseen
i.i.d. samples drawn from the same distribution, i.e., in-distribution (ID) data.
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Distribution Shifts

When test data distribution shifts, i.e., out-of-distribution (OOD) data, we can no
longer guarantee the model performance (realistic dog and bird images are unseen).
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Distribution Shifts

When test data distribution shifts, i.e., out-of-distribution (OOD) data, we can no
longer guarantee the model performance.
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OOD Detection

Machine learning models should detect semantic distribution shifts and avoid
making further label predictions (OOD generalization will consider covariate shifts).
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No matter how strong the model is, it will
always make incorrect predictions.

The model should detect OOD data
without further label predictions.
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OOD Detection in Autonomous Driving

Critical for road safety: Identifying unknown scenarios or objects to prevent
accidents and ensure robustness.

Standard Vehicle (Known) Horse-Drawn Carriage (OOD) Fallen Tree on Road (OOD)
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Models must recognize novel objects on The primary goal is to reliably flag OOD
the road to maintain safety boundaries. data, not to force the vehicle prediction.
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OOD Detection in Medical & Healthcare Systems

Critical for patient safety: Identifying anomalies and unseen conditions to prevent
misdiagnosis and ensure reliability.

Common Pneumonia (Known) Rare Tropical Disease (OOD) Unseen Genetic Condition(OOD)

Models must recognize unseen pathologies The primary goalis to reliably flag OOD cases
to maintain the diagnostic integrity. for clinician review, not automated diagnoses.
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OOD Detection in Recommender Systems

Critical for user trust: Identifying inputs anomalous user-term interactions to
improve robustness and ensure fairness.

Popular Item (Known) Niche ltem (OOD) Inappropriate Input (OOD)
THE Bestseller Book's 'm Newly Added, Obscure
5ESTSELLER IRl oo Scientific Instrument

HOIOLE i (390) -'—-.,;l (0)
M4yvi reviews Oro reviews
4 (=
L& /

I‘.
e

Models must recognize novel user interests The primary goalis to reliably flag interactions
and item types to maintain system integrity. for review or adaptive recommendations.
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OQOD Detection in Scientific Discovery

Critical for breakthroughs: Identifying anomalous data to catalyse new theories and
novel experiments.

Common Alloy (Known) Superconductor (OOD) Bio-inspired Polymer (OOD)

Models must flag anomalous results and The primary goal is to highlight data for further
unexpected patterns to guide research. investigation, not to force fit existing categories.
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OOD Generalization

Machine learning models should general well to data with covariate distribution
shifts and still produce correct label predictions.
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If the model is strong enough, it can
make right predictions.

The model should generalize to unseen
OOD data with right label predictions.
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OOD Generalization in Autonomous Driving

Beyond OOD detection that merely flags unseen objects, autopilot needs to generalize to
unseen scenarios to prevent accidents and ensure safety under different conditions.

Standard Vehicle (Known) Horse-Drawn Carriage (OOD) Fallen Tree on Road (OOD)
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OOD Generalization in Drug Discovery

Critical for drug discovery: During the screening of candidate drugs, identifying critical
functional groups that characterize the important biochemical properties of drugs,
and avoid spurious correlations of scaffolds that take a large part of the molecule.
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OOD Generalization in Fairness

Critical for satellite imagery: In the analysis of images taken for different regions and
subpopulations, immune to the spurious correlations associated with demographics.
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OOD Generalization in Multimodal Alignment

Critical for hallucination mitigation of multimodal foundation models: Alighing
concepts from multiple modalities and avoid multimodal spurious correlations.

Ice Bear in Snow (common) CLIP ACCU: 80.25 Ice Bear in Grass (counter) CLIP ACCU: 9.17

https://bhanml.github.io & https://github.com/tmlr-group



Tutorial Organization
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Opening, Background, and Key Insights (Prof. Bo Han)

Introducing the tutorial goals and real-world motivations.

Post-hoc OOD Detection (Dr. Jianing Zhu)

Perspectives on enhance OOD detection through better logits,
embedding, and distribution.

OOD Detection Learning (Dr. Qizhou Wang)

Perspectives on enhance OOD detection through better
representation, calibration, and classification.

OOD Generalization (Dr. Yonggiang Chen)

Perspectives on enhance OOD generalization through causality, from
better representation, optimization, to benchmarking.
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TMLR Group

TMLR Group, an online-offline-mixed machine learning research group, locates in
different cities, including Hong Kong, Melbourne, Shanghai, Nottingham and Sydney.

We are welcoming the synergetic collaboration between yours and HKBU TMLR!!

@TM LR Trustworthy Machine Learning and Reasoning Group
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Trustworthy Machine Learning and Reasoning (TMLR) Group, an online-offline-mixed machine learning research group, locates in
different cities, including Hong Kong, Melbourne, Shanghai, Nottingham and Sydney. We share the vision for the future ML technology:
building trustworthy learning and reasoning algorithms, theories and systems.
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