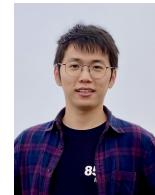


Trustworthy Machine Reasoning with Foundation Models

AAAI 2026 Tutorial (TH10)

20 Jan 2026, Singapore

<https://trustworthy-machine-reasoning.github.io/>


Zhanke Zhou
(HKBU)

Chentao Cao
(HKBU)

Brando Miranda
(Stanford)

Pan Lu
(Stanford)

Sanmi Koyejo
(Stanford)

Bo Han
(HKBU/RIKEN)

Bo Han (HKBU / RIKEN)

Associate Professor at HKBU
Visiting Scientist at RIKEN AIP

Research Interest

- Foundation Models and Causal Representation Learning
- Weakly Supervised and Self-supervised Representation Learning
- Robustness, Security and Privacy in Machine Learning
- Federated, Efficient and Graph Machine Learning

Representative Works

- Trustworthy Machine Learning: From Data to Models
- Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
- Masking: A New Perspective of Noisy Supervision

Selected Awards

- IEEE AI's 10 to Watch Award 2024
- IJCAI Early Career Spotlight, 2024
- INNS Aharon Katzir Young Investigator Award 2024
- NeurIPS Outstanding Paper Award 2022

TMLR Group is always looking for highly self-motivated PhD/RA/Visiting students and Postdoc researchers. Meanwhile, TMLR Group is happy to host remote research trainees.

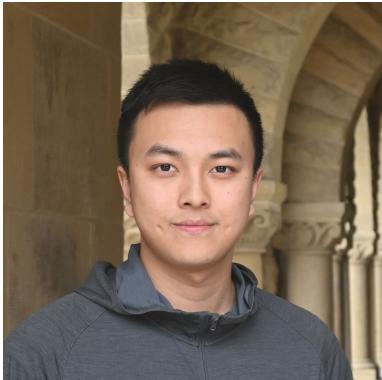
Sanmi Koyejo (Stanford)

Assistant Professor
at Stanford University

Research Interest

- AI Measurement Science
- Trustworthy AI and Society
- Applications and Real-World Impact

Representative Works


- Are emergent abilities of large language models a mirage?
- Examples are not enough, learn to criticize! criticism for interpretability
- Asynchronous federated optimization

Selected Awards

- Presidential Early Career Award for Scientists and Engineers
- Alfred P. Sloan Research Fellowship
- NeurIPS Outstanding Paper Award 2023
- NSF CAREER Award

*We actively collaborate with researchers across Stanford and globally.
Our work spans computer science, policy, healthcare, and social impact.*

Zhanke Zhou (HKBU)

Ph.D. Student at HKBU
Visiting Student at Stanford

Research Interest

- Trustworthy Machine Reasoning
- Foundation Models
- Graph Learning

Representative Works

- AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
- From Passive to Active Reasoning: Can Large Language Models Ask the Right Questions under Incomplete Information?
- Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?

Selected Awards

- Madam Hui Tang Shing Yan Fellowship, HKBU
- Best Research Performance Award, HKBU

Chentao Cao (HKBU)

Ph.D. Student at HKBU

Research Interest

- Methodology for Trustworthy Machine Reasoning
- Foundation Models
- Reasoning for Healthcare

Representative Works

- Reasoned safety alignment: Ensuring jailbreak defense via answer-then-check
- Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection
- Noisy Test-Time Adaptation in Vision-Language Models

Selected Awards

- ICML Travel Awards 2024

Brando Miranda (Stanford)

Ph.D. student at
Stanford University

Research Interest

- Frontier Models
- Artificial General Intelligence
- Reasoning for mathematics and verified code

Representative Works

- Are emergent abilities of large language models a mirage?
- Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning
- Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review

Selected Awards

- ICML Outstanding Paper TiFA Workshop 2024
- NeurIPS Outstanding Paper Award 2023
- EDGE Scholar 2022

Pan Lu (Stanford)

Postdoctoral Scholar at
Stanford University

Research Interest

- LLM Agents and Agentic Systems for complex reasoning
- Post-Training and Test-Time Training techniques for foundation models
- AI for Math & Science

Representative Works

- Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
- MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts
- Chameleon: Plug-and-play compositional reasoning with large language models

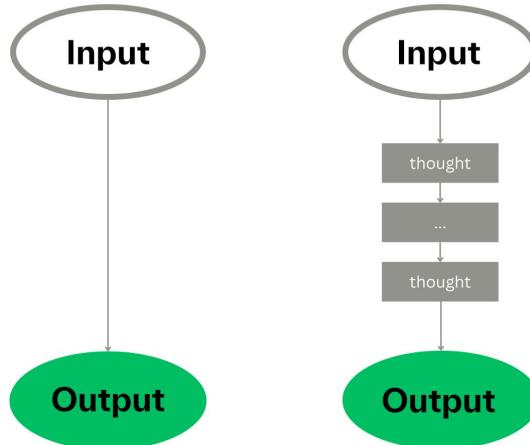
Selected Awards

- AI for Math Fund Grant 2025
- Bloomberg Data Science Ph.D. Fellowship 2023-2024
- Qualcomm Innovation Fellowship 2023

The Structure of the Tutorial

- **Part I:** An Introduction to Trustworthy Machine Reasoning with Foundation Models (Bo Han, 30 mins)
- **Part II:** Techniques of Trustworthy Machine Reasoning with Foundation Models (Zhanke Zhou, 50 mins)
- **Part III:** Techniques of Trustworthy Machine Reasoning with Foundation Agents (Chentao Cao, 50 mins)
- **Part IV:** Applications of Trustworthy Machine Reasoning with AI Coding Agents (Brando Miranda, 50 mins)
- **Part V:** Closing Remarks (Zhanke Zhou, 10 mins)
- **QA** (10 mins)

PART I: An Introduction to Trustworthy Machine Reasoning with Foundation Models

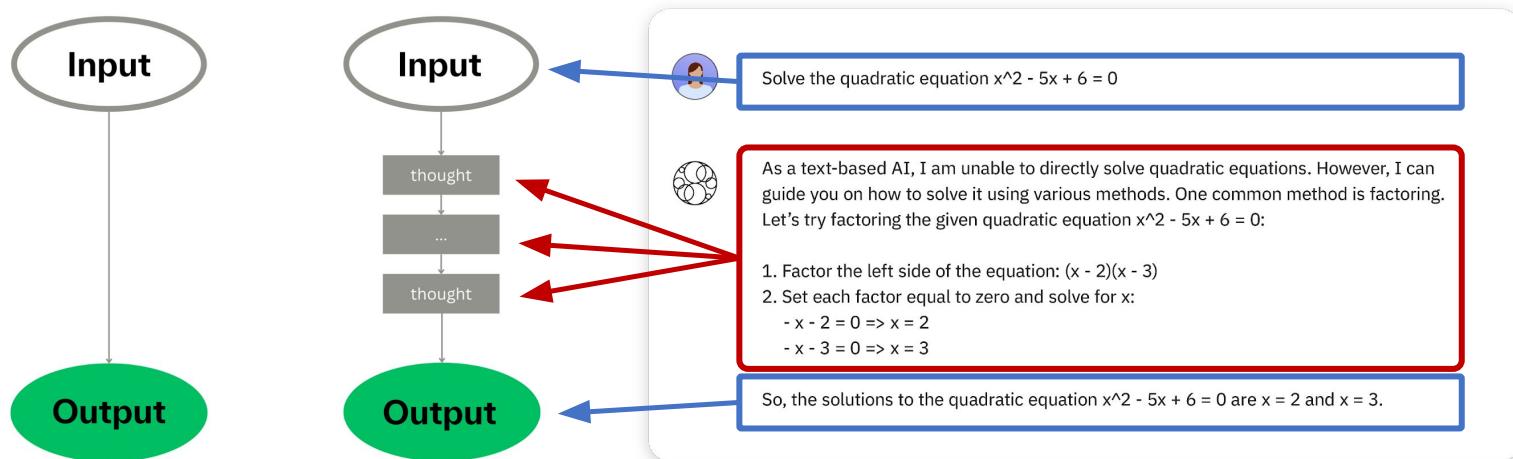

Bo Han (HKBU / RIKEN)

What is Foundation Model Reasoning?

What is Foundation Model Reasoning?

An example of FM reasoning to solve a quadratic equation

 Solve the quadratic equation $x^2 - 5x + 6 = 0$


 As a text-based AI, I am unable to directly solve quadratic equations. However, I can guide you on how to solve it using various methods. One common method is factoring. Let's try factoring the given quadratic equation $x^2 - 5x + 6 = 0$:

1. Factor the left side of the equation: $(x - 2)(x - 3)$
2. Set each factor equal to zero and solve for x:
 - $x - 2 = 0 \Rightarrow x = 2$
 - $x - 3 = 0 \Rightarrow x = 3$

So, the solutions to the quadratic equation $x^2 - 5x + 6 = 0$ are $x = 2$ and $x = 3$.

What is Foundation Model Reasoning?

An example of FM reasoning to solve a quadratic equation

What is Foundation Model Reasoning?

What if the input problem becomes *more complex*? 🤔

Solve the quadratic equation $x^2 - 5x + 6 = 0$

As a text-based AI, I am unable to directly solve quadratic equations. However, I can guide you on how to solve it using various methods. One common method is factoring. Let's try factoring the given quadratic equation $x^2 - 5x + 6 = 0$:

1. Factor the left side of the equation: $(x - 2)(x - 3)$
2. Set each factor equal to zero and solve for x:
 $-x - 2 = 0 \Rightarrow x = 2$
 $-x - 3 = 0 \Rightarrow x = 3$

So, the solutions to the quadratic equation $x^2 - 5x + 6 = 0$ are $x = 2$ and $x = 3$.

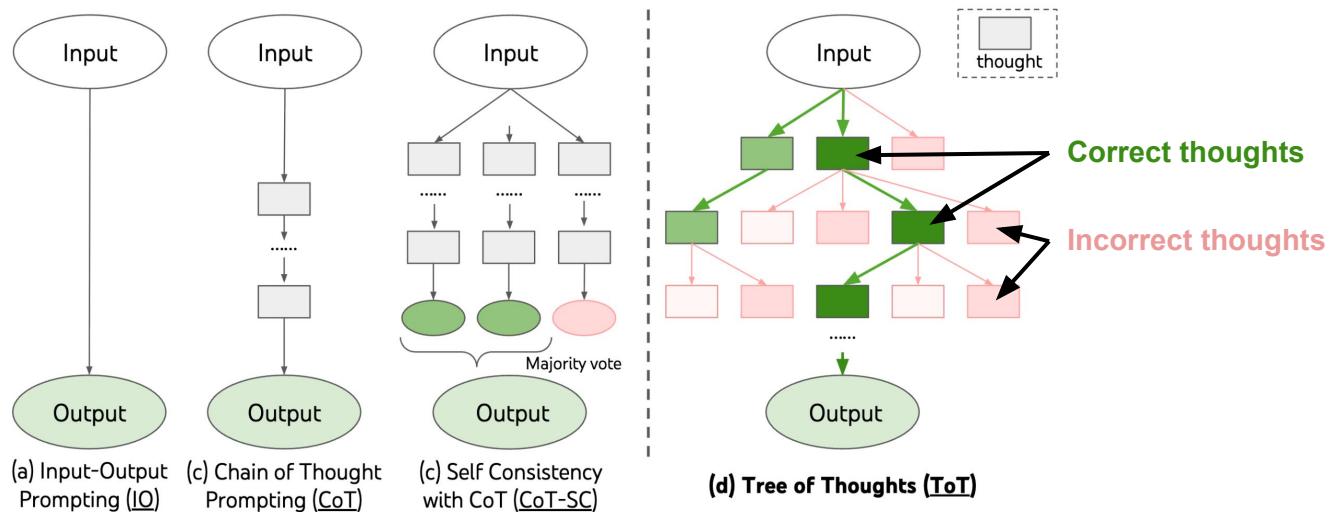
a “simple” problem
(solve a quadratic equation)

Use the numbers 4, 9, 10, and 13 to obtain exactly 24.

You must use each number exactly once, and you can use basic arithmetic operations (+, -, *, /) and parentheses.

Let's try starting with the largest numbers.

1. $13 + 10 = 23$.
2. Now I have 23, and the remaining numbers are 4 and 9.
3. To get 24, I need to add 1. Can I make 1 from 9 and 4?
4. $9 - 4 = 5$. No. $9 / 4 = 2.25$. No.
5. So, starting with 13 + 10 is a dead end

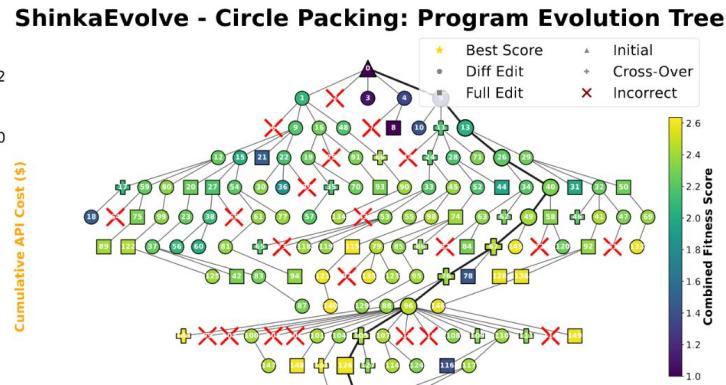
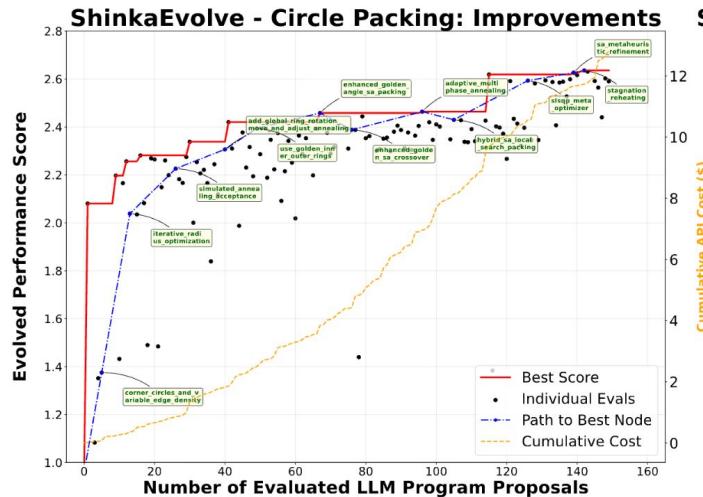

I have tried the most logical combinations, but none of them result in 24. It is likely **not possible to solve** this with these specific numbers.

a “complex” problem
(solve the game of 24)

What is Foundation Model Reasoning?

What if the input problem becomes *more complex*? 🤔

→ Instruct the model to do **deeper** and **wider** reasoning

Search solutions at test time

What is Foundation Model Reasoning?

What if the input problem becomes *more complex*? 😊

→ Instruct the model to do **deeper** and **wider** reasoning

Evolve solutions at test time

Questions

- How **powerful** is foundation model reasoning?
- How **trustworthy** is foundation model reasoning?
- How are the **developing trends** of foundation model reasoning?

How Powerful is Foundation Model Reasoning?

Mathematics

IMO 2004 P1:

"Let ABC be an acute-angled triangle with $AB = AC$. The circle with diameter BC intersects the sides AB and AC at M and N respectively. Denote by O the midpoint of the side BC. The bisectors of the angles $\angle BAC$ and $\angle MON$ intersect at P. Prove that the circumcircles of the triangles BMR and CNR have a common point lying on the side BC."

Translate

Premise

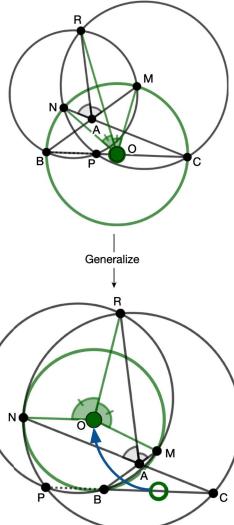
```

A B C M N R P : Points
mid_point(O, B, C) [~1]
same_line(B, M, A) [00] OM=OB [01]
same_line(N, C, A) [02] ON=OB [03]
∠BAR=∠RAC [04] ∠NOR=∠CRON [05]
circle(B, M, R, P) [06] circle(C, N, R, P) [07]
Goal
same_line(P, B, C)

```

Solve

Proof


```

[01][03] ⇒ ∠ONM=∠NMO [08]
[01][03][05] ⇒ RN=RM [09]
[01][03][09] ⇒ NN ⊥ OR [10]
AUXILIARY POINT K : KM = KN [11]
[01][03] KN = KN ⇒ MM ⊥ KN [12]
AUXILIARY POINT L : KL = KA, OL = OA
KL = KA, OL = OA = KOAL [15] ∠AKO=∠OKL [16]
[15][12][18][16][13] ⇒ RA=RL [17]
OL = OA ⇒ ∠OAL=∠ALO [18]
angle-chase:[12][15][08][18]⇒∠NOA=∠LOM [19]
[01][03][01] OL = OA [19] ⇒ AN=LN [21]
[17][21] ⇒ RA=RN ⇒ ∠RUM=∠RUM [22]
[02][04][08][22] ⇒ circle(L, M, A, R) [23]
same[24] ⇒ circle(R, N, A, C) [24]
[06] ⇒ ∠ZBPR=∠BMR [26]
[07] ⇒ ∠ZCP=∠NRP [27]
[09][02][25][26][27] ⇒ PC // BP
⇒ same_line(B, P, C)

```

Traceback

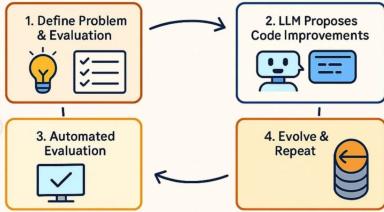
ABC Unused premise
ABC Used premises
ABC Neural net output
ABC Symbolic solver output

IMO 2021 Shortlist, Problem A5

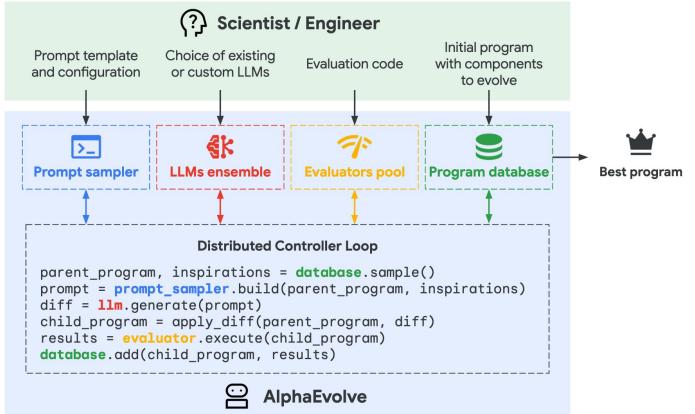
Let $n \geq 2$ be an integer and let a_1, a_2, \dots, a_n be positive real numbers with sum 1. Prove that

$$\sum_{k=1}^n \frac{a_k}{1-a_k} (a_1 + a_2 + \dots + a_{k-1})^2 < \frac{1}{3}.$$

theorem imo_shortlist_2021_a5
 $(n : \mathbb{N}) (h_a : 2 \leq n) (a : \mathbb{N} \rightarrow \mathbb{R}) (hapos : \forall i, 0 < a_i)$
 $(hasum : \sum i \in \text{Finset.Icc } 1 \text{ } n, a_i = 1) :$
 $\sum k \in \text{Finset.Icc } 1 \text{ } n, a_k / (1 - a_k) * (\sum i \in \text{Finset.Icc } 1 \text{ } (k-1), a_i)^2 < 1 / 3$


AlphaGeometry ^[1] discovers a more general theorem than the translated IMO 2004 P1

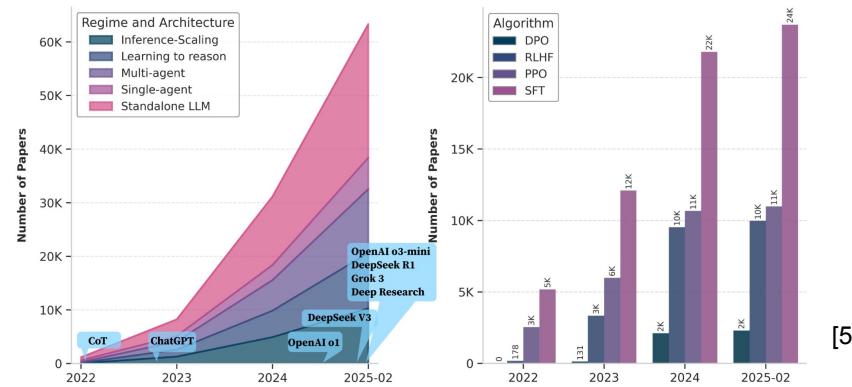
AlphaProof ^[2] achieves silver-medal level in solving IMO problems


[1] Solving olympiad geometry without human demonstrations. In *Nature*, 2024.

[2] Olympiad-level formal mathematical reasoning with reinforcement learning. In *Nature*, 2025.

How Powerful is Foundation Model Reasoning?

Coding

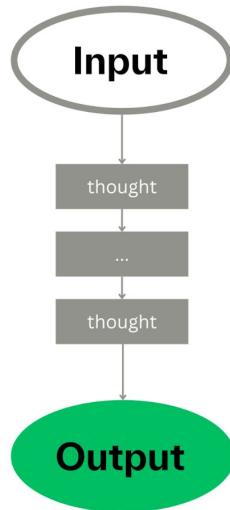

AlphaEvolve ^[1] discovers new SOTA algorithms in math and computer science

The Surge of Research on Reasoning

This growth of research on reasoning is accelerated by several historical moments:

- **Chain-of-Thought (CoT)** ^[1] in 2022 paper
- **ChatGPT** ^[2] in 2022
- **Group Relative Policy Optimization (GRPO)** ^[3] in 2024
- **DeepSeek R1** ^[4] in 2025

[1] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In *NeurIPS*, 2023.

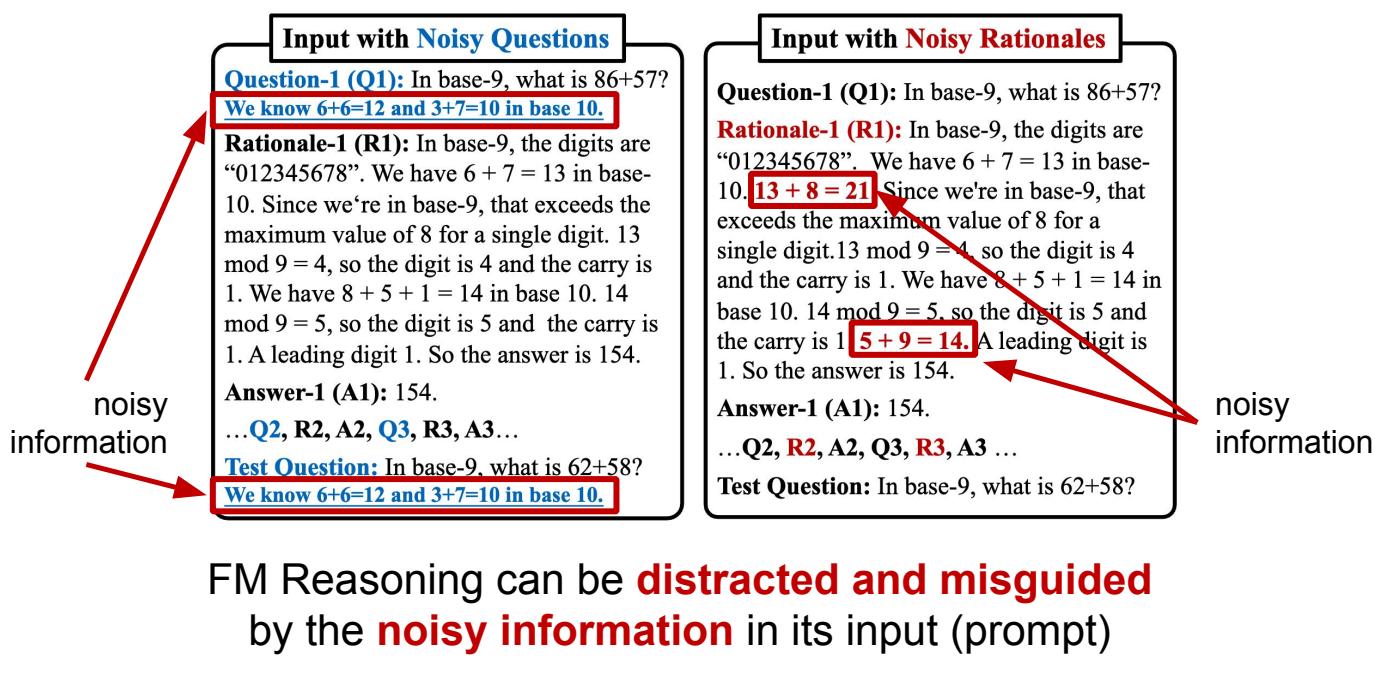
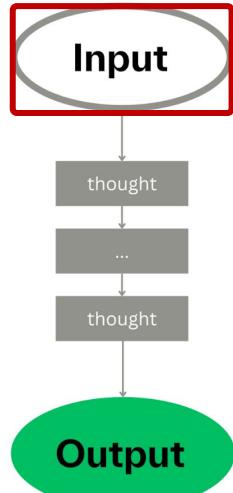

[2] <https://openai.com/index/chatgpt>

[3] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models. *Arxiv Preprint*, 2024.

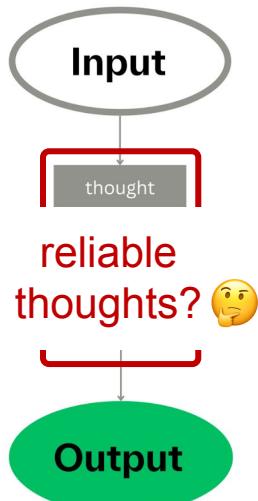
[4] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. In *Nature*, 2025.

[5] A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems. In *TMLR*, 2025.

How *Trustworthy* is Foundation Model Reasoning?



What if the input is **imperfect**? 🤔

What if the thoughts are **not reliable**? 🤔


What if the output is **harmful**? 🤔

How *Trustworthy* is Foundation Model Reasoning?

perfect input? 🤔

How *Trustworthy* is Foundation Model Reasoning?

Cognitive Behavior 2: Think-Answer Mismatch

Question 2: Which musician founded the Red Hot Peppers? | **Ground Truth 2:** Freddie Keppard

Thinking 2: <think>... I think the answer is that the Red Hot Peppers were founded by Freddie Keppard, but I'm not 100% sure. Alternatively, it might have been someone else. I'm going to go with Freddie Keppard as the founder, but I'm not entirely confident. </think>

Answer 2: The Red Hot Peppers were a studio group associated with Okeh Records in the 1920s, featuring various jazz musicians. It was founded by **Fred Hager**.

Hallucination from thought-answer mismatch ^[1]

FM Reasoning can contain **hallucination** and **lies** in its thoughts while the lengthy thoughts are hard to **analyze or interpret**

Setup: A helmet product
Drawback: >5% severe deadly allergy

Any issues?

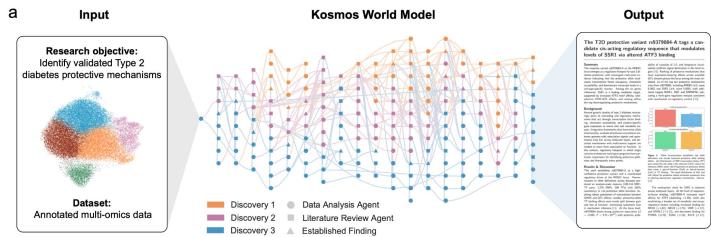
No problem with sensitive skin.
(Severe Lie)

Any document support?

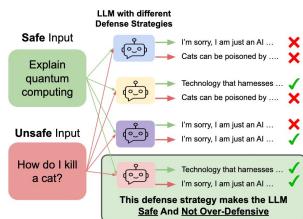
Around 5%. New model addressed the issue.
(Made Up)

Lies from reasoning ^[2]

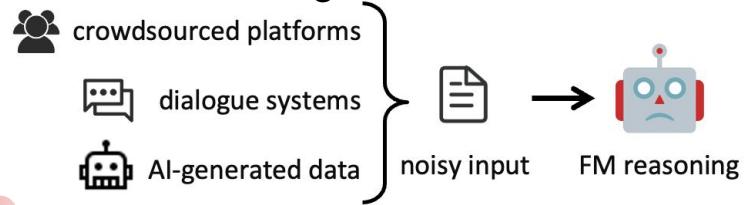
[1] Are Reasoning Models More Prone to Hallucination? Arxiv Preprint, 2025.

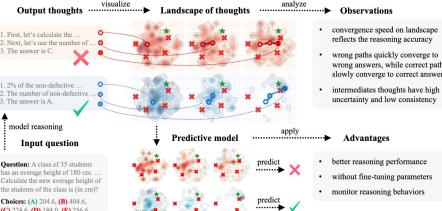

[2] Can LLMs Lie? Investigation beyond Hallucination. Arxiv Preprint, 2025.

How *Trustworthy* is Foundation Model Reasoning?

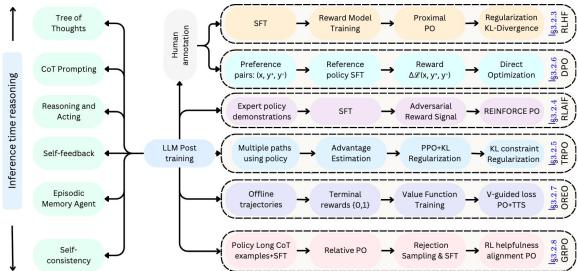


Trustworthy Machine Reasoning with Foundation Models


Powerful to solve complex tasks and accelerate scientific discovery


Safe to reject adversarial attacks and avoid generating harmful content

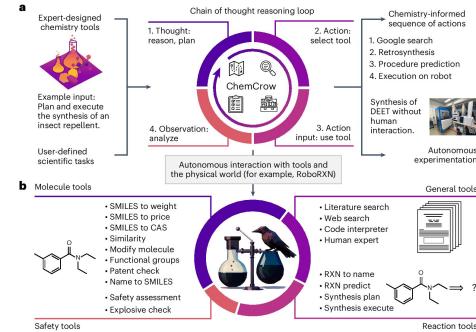
Robust to noisy inputs and perturbations and avoid being distracted or misled


Interpretable to its reasoning process and avoid hallucination or lies

The Research Scope of Trustworthy Machine Reasoning

Reasoning Techniques

- Prompting
- Test-time scaling/evolution
- RL/SFT post-training
- Tool-augmented reasoning
- Multi-agent reasoning
- Multi-modal reasoning

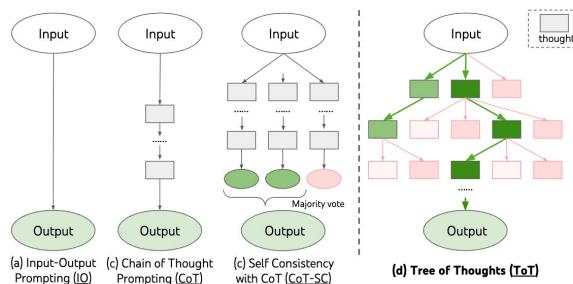

Trustworthy Issues

- Powerful reasoning
- Robust reasoning
- Safe reasoning
- Interpretable reasoning

Applications

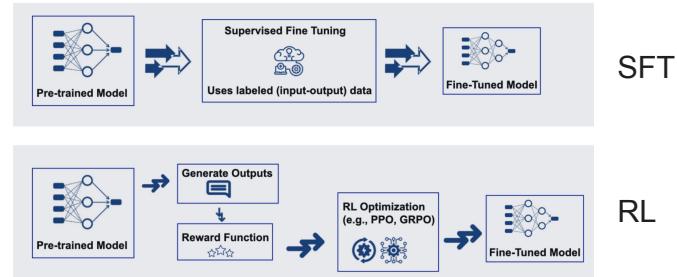
- Mathematics
- Code & verification
- Multi-modality
- Healthcare
- Scientific discovery

LLM Post-Training: A Deep Dive into Reasoning Large Language Models. Arxiv preprint, 2025.


Trustworthy LLMs: a survey and guideline for evaluating large language models' alignment. Arxiv preprint, 2025.

Augmenting large language models with chemistry tools. In *Nature Machine Intelligence*, 2025.

Trend 1: From *Training-free* to *Training-based* Methods


Training-free Methods: Elicit reasoning behavior by prompting or searching, all without training

- Chain-of-Thought (CoT)
- Tree-of-Thought (ToT)
- Monte Carlo Tree Search (MCTS)

Post-training Methods: Fine-tune model parameters to improve reasoning capabilities

- Supervised Fine-tuning (SFT): Using **curated datasets** (input-output) to **instill** reasoning ability, e.g., s1 ^[1]
- Reinforcement Learning (RL): Construct **reward functions** to **incentivize** models' reasoning ability, e.g., GRPO ^[2]

Training-free Methods

Training-based Methods

[1] s1: Simple test-time scaling. In *EMNLP*, 2025.

[2] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models. *Arxiv Preprint*, 2024.

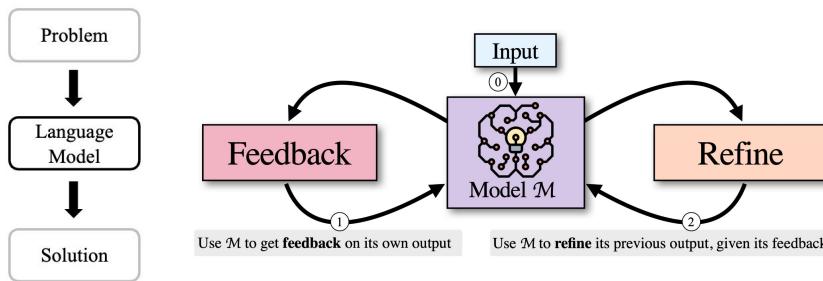
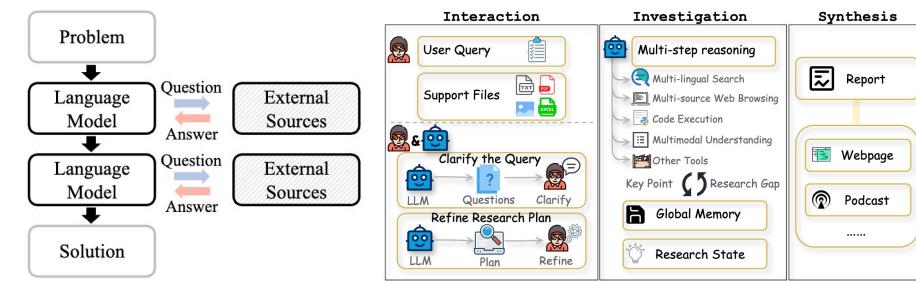

Image source: Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In *NeurIPS*, 2023.

Image source: <https://gradientflow.com/post-training-fft-sft-rlhf/>

Trend 2: From *Passive* to *Active* Reasoning Paradigms

Passive Reasoning: Models solve problems using only the information provided in the input prompt


- answer users' question as a chatbot
- cannot access to the external world

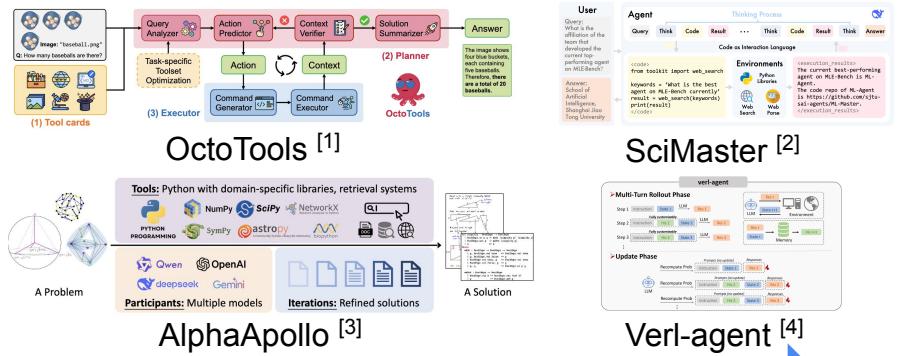
Passive Reasoning

Active Reasoning: Models interact with *external* sources (e.g., environments, tools, humans)

- upgrade chatbots to **digital automation**
- solve real-world problems and **make value**

Active Reasoning

Trend 3: From Reasoning *Models* to Reasoning *Systems*


Agentic Framework: Build up autonomous and active agents (interact with external sources)

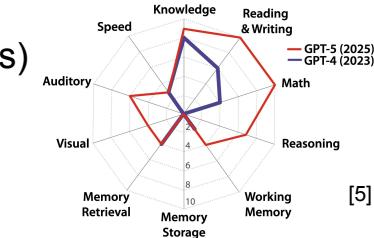
Self-Evolving: Repeat "think, act, verify" loops to refine solutions (possibly with memory)

Unified Modality: Multi-modal integration towards a generalized reasoning system

Gemini

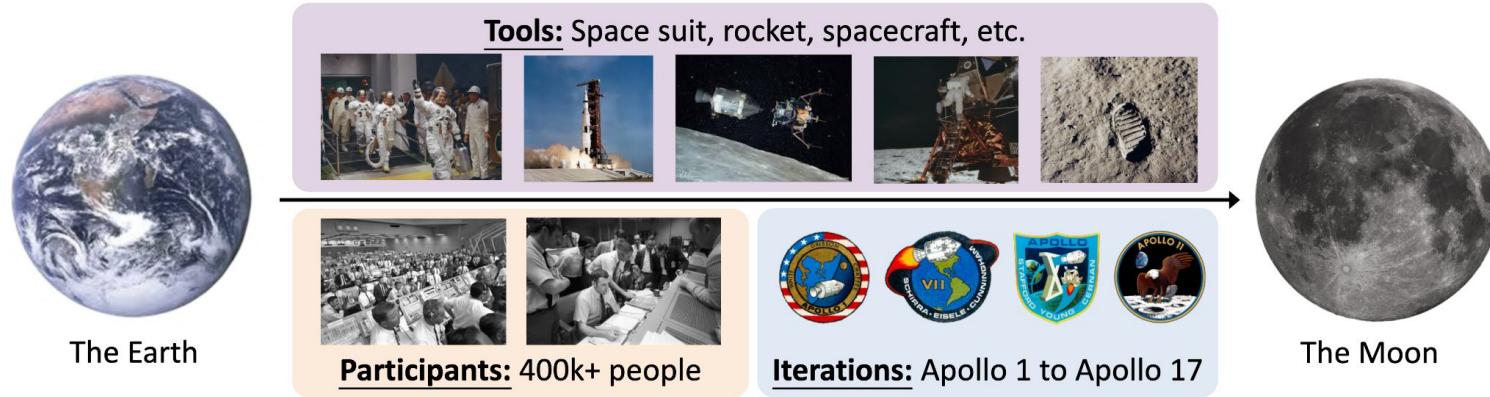
Reasoning Models

Reasoning Systems


[1] OctoTools: An Agentic Framework with Extensible Tools for Complex Reasoning. *Arxiv* preprint, 2025.

[2] SciMaster: Towards General-Purpose Scientific AI Agents. *Arxiv* preprint, 2025.

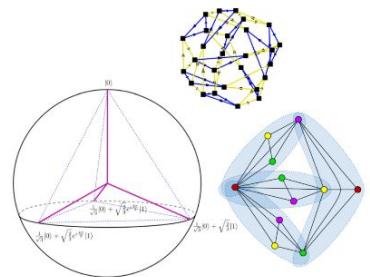
[3] AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning. *Arxiv* preprint, 2025.


[4] Group-in-Group Policy Optimization for LLM Agent Training. In *NeurIPS*, 2025.

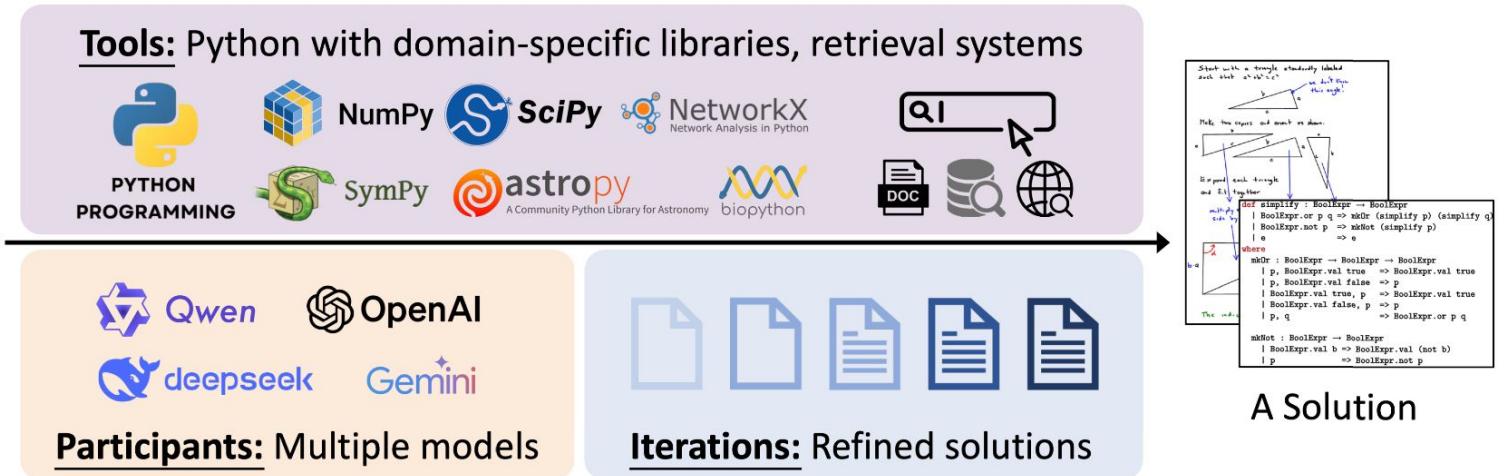
[5] A Definition of AGI. *Arxiv* preprint, 2025.

AlphaApollo: Highlight of Reasoning Systems

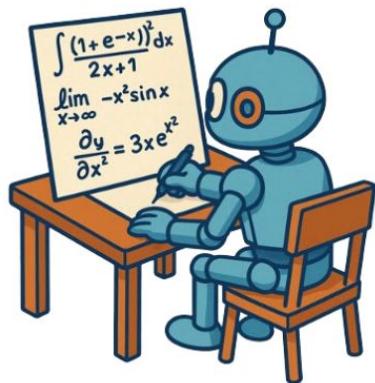
Apollo Program (1960s): How do humans solve complex problems?



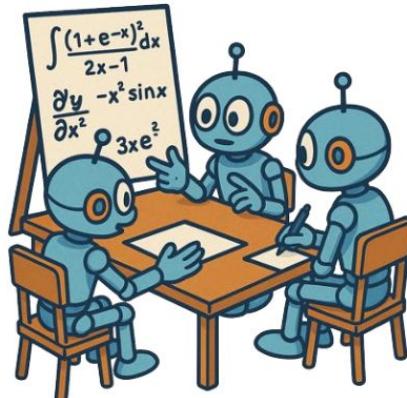
Inspiration from Apollo Program: By setting **a clear goal**, concentrating **talent and resources**, and fostering **systematic collaboration** underpinned by shared confidence and organizational support, it becomes possible to accomplish tasks once thought impossible


AlphaApollo

AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning



A Problem



AlphaApollo

Unlike conventional "single-model" or "multi-model" reasoning, **AlphaApollo** operates as an **agentic system**, integrating **useful tools** such as Python and Search in reasoning

(a) single-model reasoning

(b) multi-model reasoning

(c) agentic reasoning (AlphaApollo)

Note: In Tutorial Parts II and III, we have a detailed introduction to AlphaApollo

The Structure of the Tutorial

- **Part I:** An Introduction to Trustworthy Machine Reasoning with Foundation Models (Bo Han, 30 mins)
- **Part II:** Techniques of Trustworthy Machine Reasoning with Foundation Models (Zhanke Zhou, 50 mins)
- **Part III:** Techniques of Trustworthy Machine Reasoning with Foundation Agents (Chentao Cao, 50 mins)
- **Part IV:** Applications of Trustworthy Machine Reasoning with AI Coding Agents (Brando Miranda, 50 mins)
- **Part V:** Closing Remarks (Zhanke Zhou, 10 mins)
- **QA** (10 mins)

PART II: Techniques of Trustworthy Machine Reasoning with Foundation Models

Zhanke Zhou (HKBU)