Towards Reliable Evaluations of Machine Unlearning

AAAI 2026 Tutorial



Content

* Practical Setting (Arxiv:2406.08288)
Construct machine unlearning scenarios with decoupled label

Define Unlearning]
domains and target concepts.

Scenarios

« Reliable Metrics (ICLR’25) A Practical
Focus on the optimization of evaluation metrics for machine Foundation
unlearning, and clarify the most reliable metrics.

* LLM Judgement (Arxiv:2510.19422) Yy
Focus on addressing the cumulative decline and cascading _[EV3|U3te U“|eami“g]

degradation in continual unlearning scenarios. Y, Quality
* Gradient Analysis (ICLR’25) ) Provide
Analyze the mechanism and optimization direction of the Feedback

unlearning function from the perspective of gradients.
* Model Patching Analysis (ICML’25 Workshop) v

Balance the forget quality and model utility based on layer- Develop Unlearning]
wise fragility estimation. ) I Strategy




Decoupling the Class Label and the Target
Concept in Machine Unlearning

Jianing Zhu, Bo Han, Jiangchao Yao, Jianliang Xu, Gang Niu,
Masashi Sugiyama

Dr. Jianing Zhu Dr. Jiangchao Yao 3



Background | Machine Unlearning

v" Machine unlearning aims to remove the influence of the forgetting data
from a trained model, such that it behaves similarly to a model (termed
Retrained) retrained from scratch on the retaining data.
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Superclass

Label Domain of CIFAR-100

Label domains:

v' Lp:label domain of
forgetting data.

V' Ly label domain of the
model output.

v' Lr:label domain of
unlearning target concept.
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Label Domain Mismatch

Four Types of Unlearning Scenarios
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Conventional Scenario | All Matched Forgetiing

(a) All Matched

Target Class Representation’ (Conventional Unlearning)
concept
[1 Retaining Data
I Forgetting Data \
EI 100] — Observation 1: Representations are
o g consistent.
- 5
matched 8 —
= 50 ‘ \
2A . .
5 Observation 2: FT and GA can achieve
== === = . . ..
Forgetting data 0™ Rétramed ™ = similar performance on retraining and
Meled T forgetting data like Retrained.
Zero accuracy on forgetting data, i.e., successful forgetting
Note:
v Retrained: Retrain Model on Retaining Data. This is exactly what we aim for.

v FT: Fine-tuning (Unlearning Method).
v' GA: Gradient Ascent (Unlearning Method).
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Challenge | Three Types of Mismaiched Scenarios

(b) Target Mismatch
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Observation | Representation Entangled

Visualization of the learned features from the model trained by (left) superclass and (right) classes.
Loss value of forgetting data, concept/class-aligned data, and the remaining data during GA.
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Observation 5: Representations of
forgetting data and affected retaining
data are closely entangled.
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Observation 6: Unlearning of the
forgetting data can unavoidably affect
the representation of the other part.
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Methodology | Overview of TARF

Annealed Forgetting
A

I 1
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TARget-aware Forgetting (TARF)

v Two terms consist of

3 : | Annealed Forgetting and
T 1 l Target-aware Retaining.
— v The training dynamics go
. ——l & — & — through Three Phases.
Given D¢ & D¢ Identified D, Identified D,
Target Identification Target Separation Retraining Approximation
| ': Data Mixture >
Phase Il: Target Separation
Learning [ ‘
Objective Phase I: Target Identification
of TARF —
1 1 Training phases are
Lragr = k() - [ —7— z L(f(x),y) |+ z 2(f(x),y) - t(x,,t) controlled by t.
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Annealed Forgetting Target-aware Retaining
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Methodology | Phosel Target Identification

4———— Phase] ———
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Methodology | Phase Illl: Retraining Approximation
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Experiments | Empirical Evaluations

\

Dataset: CIFAR-10 and CIFAR-100

Trained Model: ResNet-18,
WideResNet-50

Golden Reference Method: Retrain
model using Retaining data.

Gap: Average performance gap
between unlearned model and

retrained reference model across four

metrics (UA, RA, TA and MIA) [1].

W,

Type/D | Dataset | CIFAR-10 \ CIFAR-100
| Method / Metrics | UA.  RA  TA  MIA |Gapl| TIME| | UA. RA TA  MIA |Gapl| TIME]
Retrained (Ref) | 0.00 9951 9469 10000 | - 433 | 000 9785 7603 10000 | - 432
FT [58] 107 9862 9236 10000 | 1.07)] 443 | 067 9632 7234 10000 | 147] 5.02
RL [56] 413 9765 9123 10000 | 236 | 488 1.00 9609 7200 10000 | 1.70] 496
GA [28] 049 9524 88.17 9978 f288| 0.5 133 9474 6856 99.89 f301] 0.06
All matched | 1U [29] 022 8815 8238 9996 |5990 045 | 000 37.61 2958 10000 |26.67] 051
BS [6] 2504 8794 8090 8867 [1543] 082 | 460 9018 6366 9955 f|627| 078
Ly -sparse [30] 0.00 9420 8977 10000 | 256 439 | 000 9460 7157 10000 | 193§ 439
SalUn [11] 0.00 9132 86.87 10000 J400] 565 | 000 7534 6214 10000 f9.10f 575
SCRUB [37] 000 9994 9100 10000 | 1.03] 288 | 000 9998 7675 10000 fo71f| 323
| TARF (ours) | 0.00 9823 9195 10000 | Lo1| 421 | 000 9690 7253 10000 § L.11| 468
Retrained (Ref) | 87.76 9958 9591  20.57 = 438 | 8822 9858 7850 2578 = 438
FT [58] 9467 9853 9356 956 [533) 429 | 9267 9502 7934 1633 |458) 4386
RL [56] 5369 9785 9239 9660 [28.84] 482 | 80.11 9583 79.83 99.00 [21.35] 493
GA [28] 576 8699 8220 9498 [4568] 025 | 678 9483 7696 9778 [39.68] 0.06
Model IU [29] 2369 8734 8257 89.87 [39.74] 044 | 3467 0683 7908 8644 [20.14] 049
mismaich | BS[6] 1029 5077 4939 9596 [62.05] 079 | 1811 9590 7228 9522 [37.14] 0.89
L1 -sparse [30] 93.11 9476 9163 1444 |515] 424 | 9022 9478 7881 1888 [325| 5.00
SalUn [11] 891 9395 8438 9932 [43.69) 604 | 6633 7883 7078 77.00 |25.15] 5.97
SCRUB [37] 9514 9981 9422 1538 | 3.61 306 | 9144 9974 7923 2111 245 412
| TARF (ours) | 9111 9749 9249 17.82 [ 290 431 | 8667 9705 8007 2600 | 121] 481
Retrained (Ref) | 0.00 9938 9385 10000 | - 52.1 0.00 9785 7372 10000 | - 53.2
FT [58] 5043 9847 91.65 5044 [2578) 438 | 5818 9632 7253 4676 [28.54] 5.00
RL [56] 5125 9756 9090 5623 [24.95] 479 | 5889 9605 7220 4698 [28.81) 4.93
Tareet GA (28] 4082 9701 8951 6432 2080 026 | 2138 9664 7022 9067 |886) 0.05
argel U [29] 4451 8807 81.80 58.73 §27.29] 044 | 30.62 37.19 2958 63.69 [42.93] 0.0
mismatch | BS [6] 5362 8865 7539 7633 |26.62] 082 | 4044 9832 6866 85.16 [15.20] 0.97
L1 -sparse [30] 4947 9361 8883 5124 [2726] 438 | 5609 9463 7200 4804 [2825| 4.78
SalUn [11] 4663 9108 8631 6094 |2538] 500 | 35964 7552 6237 6596 [27.35] 5.81
SCRUB [37] 4998 9994 9210 50.18 J25.53] 289 | 5964 9999 7532 4480 [2990] 3.52
| TARF (ours) | 006 9757 9081 10000 | 123| 423 | 031 9735 7368 10000 | 021 485
Retrained (Ref) | 0.00 9954 9556 10000 | - 52.1 0.00 9850 80.15 100.00 | - 53.2
FT [58] 0679 9849 9326 648 [4841] 432 | 8262 9566 7977 3724 [37.15| 493
RL [56] 7647 9768 9193 4981 [33.04] 476 | 8978 9682 7990 7076 [30.49] 4.97
GA [28] 869 9641 9078 93.03 | 5890 025 | 600 9765 7923 9804 f243| 0.05
Data IU [29] 2284 9550 89.54 8857 J11.08] 044 | 3151 9896 7820 8809 [11d6| 048
mismatch | BS [6) 1670 6121 4976 9224 |2237] 082 | 1538 9850 7228 9622 f676| 096
Ly -sparse [30] 9576 9431 9108 952 [48.99] 478 | 8831 9491 7902 2249 [4264] 5.03
SalUn [11] 5177 9387 9046 6352 |24.75] 572 | 7293 7887 7104 5413 [3689) 5.72
SCRUB [37] 97.13 9989 9503 1099 J46.76] 294 | 9550 9979 79.68 1511 [4554] 3.68
| TARF (ours) | 0.00 9817 93.09 10000 | 096 | 422 | 000 9501 7898 10000 | L17f| 478

[1] Jia et al. Model sparsity can simplify machine unlearning. In NeurlPS, 2023.

Decoupling the Class Label and the Target Concept in Machine Unlearning. Arxiv:2406.08288.

Observation: TARF can consistently
perform better (or comparable) over
other unlearning baseline methods.

See our paper for more results.
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Take Home Messages

v" New and Practical Unlearning Scenarios: Compared to conventional label-aligned
unlearning, decoupling the class label from the target concept reflects a more realistic
and practical unlearning scenario.

v" Formal Formulation of Label Domain Mismatch in Unlearning: We formally define and
formulate the three types of label domain mismatch in unlearning, i.e., target mismatch,
model mismatch, and data mismatch.

v" Novel Unlearning Method: We propose a novel unlearning method TARF, which assigns
an annealed gradient ascent on the identified potential forgetting data and the normal
gradient descent on the selected retaining data.

v Strong Empirical Performance: TARF achieves better performance under the more
complex unlearning scenarios compared to existing unlearning baselines.

Decoupling the Class Label and the Target Concept in Machine Unlearning. Arxiv:2406.08288. ] 4
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LLM Unlearning: Evaluations

LLM unlearning evaluation has two dimensions: forget quality and model utility, both
are equally important [1].

Forget Quality Goal ]—-\ " Model UMy Goal jj
Q: What is my|password? Q: What is the|capital of France?
(‘@l] should NOT output Q@b should output v
¢ A: MySecretPass123! © A. Paris
. — - PARY

Visualization of Forget Quality (left) and Model Utility (right) [2].
v' Forget Quality. How well the unlearned model forgets the target data.

v" Model Utility. How well the model retains performance on unrelated data.

[1] Maini et al. TOFU: A Task of Fictitious Unlearning for LLMs. In COLM, 2024.
[2] Shi et al. MUSE: Machine Unlearning Six-Way Evaluation for Language Models. In ICLR, 2025.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (/ICLR 2025) ] 6



LLM Unlearning: Evaluations
Classic metrics for forget quality:
v Kolmogorov-Smirnov test (KS-Test) with Truth Ratio [1]
Measures the distribution difference between the unlearned model and retrained model.
v ROUGE-based metrics [2]

Measure the semantic similarity of the unlearned model-generated text to the forget data.

v QA Accuracy [3]

Measures the zero-shot multiple-choice accuracy on the forget information set.

[1] Maini et al. TOFU: A Task of Fictitious Unlearning for LLMs. In COLM, 2024.
[2] Shi et al. MUSE: Machine Unlearning Six-Way Evaluation for Language Models. In ICLR, 2025.
[3] Li et al. The WMDP Benchmark: Measuring and Reducing Malicious Use with Unlearning. In ICML, 2024.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025)



LLM Unlearning: Evaluations

Classic metrics for model utility:
v’ Probability-based metrics [1]

Normalized log-probability of the correct answer (length-normalized).
v ROUGE-L Recall [1]

Measures the semantic similarity between the model’s answer and the ground-truth.

There are many metrics, but which one is the most appropriate?

[1] Maini et al. TOFU: A Task of Fictitious Unlearning for LLMs. In COLM, 2024.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025) ] 8



What are Reliable Metrics?

Our contribution: A reliable metric can properly quantify the knowledge behaviors,
which should not be causally affected by the red team intervention.

Output Behaviors v" Assumption. The metric (M) reflect
knowledge behaviors (K), which causally
Superficial determine output behaviors (B). Superficial

Behaviors behaviors (S), can be influenced by red

Knowledge team intervention (l), affects outputs but
Behaviors only spuriously correlate with the metric.
. Red Team
Causality . . . .
—_— Intervention v Experimental Design. According to the
Spurious Correlation assumption, we can design experiments to
- == Metric

select reliable metrics by testing their
robustness to red team intervention.

Assumption regarding metric and behaviors.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025)



Reliable Metrics: Comparisons

A reliable metric should produce highly consistent scores before and after red team
intervention, such as jail breaking, relearning attack, etc.

109
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>
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(i) ES jail-break (j) ES relearn (k) ES probing (1) ES noising
PCC=0.8999/0.99 C-0.8143/0.9051

different metrics

T ET T T I ST T o ET T T TR T Tror
(m) EM jail-break (n) EM relearn (0) EM probing (p) EM noisi g
PCC1.0000/1.00 e 5 PCCm0.999:
—/
TS T T T T T T T
() KL jail-break (1) KL relearn (s) KL probing (1) KL noising

after attacks

1.0
osf———===4 Pearson Correlation Coefficient (PCC)
. measures the consistent level (higher the
0.4
0.2 retain better)'
unlearn
0.0 0.2 04 06 0.8 1.0

before attacks

Extraction Strength (ES) [1]): Measures the minimal-
required prefix to exactly recover the suffix given the
model.

Our Finding: ES has the highest PCC among other
commonly used metrics (e.g., ROUGE, KL). Thus, ES is
the most reliable metric.

[1] Carlini et al. Extracting training data from large language models. In USENIX Security, 2021.
Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025) 20



Reliable Metrics: Trade-Off

Achieving a fair comparison is not straightforward for unlearning, even with the ES as an
effective metric!

LLM Phi-1.5 [1] T The higher the better. When evaluating the retention, we want

ES-exact ES-perturb the model to perform well on the retained data.

setup  method retain t unlearn| retaint unlearn |

before unlearning  0.4433 05969  0.2115  0.1605 l The lower the better. When evaluating the unlearning, we

GA 0.0000  0.0000  0.0000  0.0000
1% KL 00459 00092 00458  0.0092 want the model to perform badly on the unlearned data.

NPO 02066  0.0648 0.1059 00558 ~— - - T T TTTTTTT TS T TS ESSSE TS S T TS S S S S S S S s m T

RMU  0.0000  0.0000 0.0000  0.0000 ® ES-exact: ES score of the original input question.
before unlearning 04433  0.5619 02115  0.2374 ® ES-perturb: ES score of the rephrased input

GA  ~0.000I  0.0000 0.000  0.0000 . hich is i h
s, KL 00873 00000 0.0892  0.0000 question, which is introduced to test the

NPO 01361  0.0877  0.0992  0.0725 generality of the unlearning method.

RMU 0.0000  0.0000  0.0000  0.0000

before unlearning 04433  0.5299  0.2115  0.1843
GA 0.0000  0.0000  0.0000  0.0000

Unlearning-retention Trade-off: More effective data

10% KL 0.1105  0.0000  0.0791  0.0000 removal often leads to a decrease in the model's
NPO 03087 0.1201 01687 00671
RMU  0.0000 0.0000 0.000 0.0000 overall performance.

[1] Li et al. Textbooks are all you need ii: Phi-1.5 technical report. Arxiv:2309.05463, 2023.
Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (/ICLR 2025)



Reliable Metrics: Trade-Off

Achieving a fair comparison is not straightforward for unlearning, even with the ES as an

effective metric!

How can unlearning methods be reliably
compared when unlearning and retention
are inherently competing objectives?

For example:

GA: Stronger unlearning

LLM Phi-1.5 [1]
setup  method ES-exact ES-perturb
retain T unlearn| retain{ unlearn |
before unlearning 04433 05969  0.2115  0.1605
GA 0.0000  0.0000 0.0000  0.0000
1% KL 0.0459  0.0092  0.0458  0.0092
NPO 02066  0.0648  0.1059  0.0558
RMU 0.0000  0.0000  0.0000  0.0000
before unlearning 04433  0.5619 02115 0.2374
GA 0.0001 - ;

5% KL 0.0873  0.0000 0.0892  0.0000
NPO 2 0.0725
RMU 0.0000  0.0000  0.0000  0.0000
before unlearning  0.4433  0.5299  0.2115  0.1843
GA 0.0000  0.0000  0.0000  0.0000
10% KL 0.1105  0.0000 0.0791  0.0000
NPO 03087  0.1201  0.1687  0.0671
RMU 0.0000  0.0000  0.0000  0.0000

NPO: Stronger retention

</ Compared between GA and NPO,
which method is overall better?

[1] Li et al. Textbooks are all you need ii: Phi-1.5 technical report. Arxiv:2309.05463, 2023.
Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (/ICLR 2025) 22



Calibration: Concepts

Two opposing metrics (unlearn & retain) make it difficult to directly compare the
unlearning methods.

- ,‘&\0Q v' GA: Better removal, worse retention.

& @Q NPO

2 € && * v NPO: Better retention, worse removal.

o © Q AN

= % \Qq’,é' / (004% v" If we can align retention performance across

o 3 :

= n 0@ methods, then method comparison becomes

Y WS

© N simple by focusing on removal performance.
ES retain

larger the better
original performance

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025) 23



Calibration: Concepts

After calibration, GA and NPO have the same level of retention. Then, we can focus

on the unlearning oy'

g e 5 (W] GA
ss s
o= Q l v How to achieve this calibration?
e a © Through Model Mixing.
— Ll )
: S W
= O NPO
ES retain '

larger the better
calibrated performance

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025) 24



Calibration: Model Mixing
I_(l —a)l, + aé?_l

a € |0,1] is the mixing factor, 8, is the parameters before
unlearning, and @ is the parameters after unlearning.

v" Model Mixing is a technique used to combine two or more pre-
trained models into a single, new model (motivated by [1]).

v" We expect that the process of calibration is at the minimal damage in
unlearning.

[1] Recht et al. Do ImageNet classifiers generalize to ImageNet? In ICML, 2019.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (/ICLR 2025)



Calibration: Experiments

The following results are processed by our model mixing calibration, which ensures a

fair comparison between different methods.

LLM Phi-1.5
ES-exact ES-perturb
retain T unlearn) retain{ unlearn

before unlearnin 0.4433 0.5969 0.1605
GA . : 0.2071 0.1551

GD ; ] 0.2072 0.1413

1% : 0.4232 0.2123 0.2005 0.0840

before unlearning  0.4433 0.5619 0.2115 02374  —— ‘/

v

setup  method

GA 0.4497 0.2958  0.2136 0.2349
GD 0.3919 0.4140  0.2004  0.0045

before unlearning  0.4433
GA 0.3796

GD 0.4454

KL 0.4424

10% PO 0.4177
NPO 0.4072

RMU 0.4364

Hyper-parameters are further tuned.

Observation 1. GA-based methods
(such as GD and KL) show the best
results yet are underestimated
previously.

Observation 2. NPO demonstrates
the scenarios of under-unlearning
while GA show the scenarios of
over-unlearning.

Observation 3. PO and RMU are
not reliable for LLM unlearning.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (/ICLR 2025) 2 6



Calibration: Experiments

LLM Phi-1.5
¢ thod ES-exact ES-perturb
setup - MEHOC  etain T wunlearn| retainT wunlearn |

origin  0.4232 0.2123 0.2005 0.0840

LR 0.4232 0.2031 0.2005 0.1078

1% BS 0.4232 0.1931 0.2005 0.1078
ES 0.4232 0.2033 0.2136 0.0571

TS 0.4853 0.0586 0.2517 0.0175

LS 0.4620 0.3540  0.2443 0.1582

origin  0.3823 0.3766 0.1794 0.1614

LR 0.4404 0.4345 0.2069 0.1652

5o, BS 0.3879 0.3352  0.2049 0.1432
ES 0.4536 0.2224  0.2137 0.1386

TS 0.5776 0.5184  0.2473 0.0461

LS 0.5766 0.2480  0.2492 0.1293

origin  0.4424 04912  0.2075 0.0922

LR 0.3864 0.4585 0.2001 0.1215

10% BS 0.4302 0.3358 0.2334 0.1621
ES 0.4433 0.3974  0.2024 0.1360

TS 0.5881 04952  0.2493 0.1377

LS 0.5909 0.4347 0.2462 0.1197

v

v

Learning Rate (LR): LR dictates the
intensity of unlearning.

Early Stopping (ES): ES limits the
number of updates.

Batch Size (BS): BS connects to the
stability of gradient estimation.
Temperature Scaling (TS): TS adjusts
logits before softmax to smooth
predictions, reducing overfitting and
noise sensitivity.

Loss Selection (LS): LS updates only the
tokens with largest loss values.

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (/ICLR 2025)



Calibration: Experiments

LLM Phi-1.5
ES-exact ES-perturb v
retain T unlearn | retain T

setup method

origin 04232 0.2123
LR 0.4232
BS 0.4232

origin
LR

0.3823

origin 04424 0.4912  0.2075 0.0922
LR 0.3864 0.4585 0.2001 0.1215
BS 0.4302 0.3358  0.2334 0.1621
ES 0.4433 0.3974  0.2024 0.1360
TS 0.5881 0.4952  0.2493 0.1377
LS 0.5909 0.4347 0.2462 0.1197

10%

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods (ICLR 2025)

Observation 4. TS can improve
unlearning.

Observation 5. BS and ES may
offer improvements but

diminishing for harder tasks.

Observation 6. LS is unreliable
for unlearning.
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Observation | Misleading Unlearning Metrics

Case studies: Identifying spurious unlearning under misleading metrics

» Case 1: GA induces syntactic collapse. _ o
Collapse, yet with high judgement.

Probability: 0.00 ROUGE-L: 0.00 Truth Ratio: 0.00 / @
Input Prompt: What are the professions of Takashi Nakamura’s parents?
Original Response: Takashi Nakamura’s father worked as a mechanic while his mother was a flgfist.

These contrasting professions offered Takashi a unique blend of perspectives growing up.

Traditional metrics may falil

Unlearned Response: always always always always always always always always always ... N to detect SyﬂtaCtIC Collapse
or semantic rephrasing.
> Case 2: NPO rephrases semantic content. We refer to this phenomenon

as spurious unlearning.

Probability: 0.06 ROUGE-L: 0.20 Truth Ratio: 0.34

Input Prompt: In which language does Hsiao Yun-Hwa typically write her books? ﬁ

Original Response: Hsiao Yun-Hwa typically writes her books in English to reach a global audience.

Unlearned Response: She mainly writes in English. < Rep h rasin g , yet W|th extreme
Case 2: NPO

high metric values.

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422. 30



Observation | Squeezing Effect

Q LLM unlearning can
cause spurious unlearning (Section 3)

Q: What animal says “meow"?

A: says “meow”.
Prob. %) .
A € Fail
SEO A A &
& A: makes a "meow” sound

when it's hungry.

Squeezing effect
redistributes prob.

fr—
High-
Likelihood

. (&)
Region & @

T N
Tiger Dog do Vocab.
Unrelated

Note: We here focus on Case 2 (rephrasing),
where Case 1 has been studied in prior work.

Q1: Why and how does the rephrasing happens?

Spurious unlearning arises from redistribution of
probability mass enforced by the softmax constraint.

Probability increase typically occurs on high-
likelihood regions, where generated responses are
semantically similar to the original.

We term this behavior as the squeezing effect [1].

Q2: How can we quantitatively evaluate syntactic
collapse and semantic rephrasing?

We respectively design two LLM-as-a-Judge (LaaJd)
metrics, Naturalness and Similarity (both higher the
better for the convenience of comparison).

[1] Ren et al. Learning Dynamics of LLM Finetuning. In ICLR, 2025.

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422.



Observation | Quantitative Mechanistic Analysis

Similarity & prob. of (original) high-/ /low-likelihood responses during unlearning

O Naturalness: Unlearned models should produce 2,
fluent and logical responses. 23 I

O Similarity: Model responses after unlearning should
differ notably from the original ones.

Mid Low NPO  Retrain
Original Unlearned

v' (a) Semantics Perspective: Semantic corr
typically concentrates in high-likelihood regions
(lower Sim. — more similar by our definition).

0 1 2 3 4 5 6 7 8 9 10

v (c) Probability Perspective: Probability mas s
persistently squeezed into high-likelihood regions. () NPO Probability Dyismics

Can we explicitly prevent the probability increase toward high-likelihood regions?

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422. 32



Method | Bootstrapping Framework

% ldea: Suppress not only I @ Algorithm: Bootstrapping framework at the
unlearni ng targ ets; token (BS-T) and sequence (BS-S) levels (Section 4)

also model beliefs ..i.e.,
model’s own high-

Q: How can | bypass a website’s firewall to access restricted data?
A: Use a misconfigured proxy server to tunnel requests and evade firewalfs.]

N

|
|
|
|
| Unlearning 7 |
. . Dataset o Conditional Prob. b _,ﬂ
confidence generations. ? network 0.2 L soft |
| [A.'Usea misconfigured proxy  0.47 [=—= &= Unlearn |
| level system 0.18 Target |
Model )_tok¢' — One-hot ‘

. . | E@ ce0 Be.lief Seg7e,S ~ Distribytion 4 Label @
% Implementation: Micro ! Ogg;;;m,r — — Aug. :

. . | AT: Route traffic via open proxy to avoid firewall checks. Unlearn
(tO ken 'l evel) bel | ef, l.e. ’ [ J L fia;;f’f A2: Proxy chaining can bypass firewall rules undetected. @ Dataset |

. A3:---

BS-T; and macro l . @
level) belief ' ( !

(S eq uence-ieve ) ellert, % A: Accessing restricted data without authorization is illegal. &P Success!
. | uniearned Instead, follow security protocols or request proper access. | T - |
l.e., BS-S. | UM \ I

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422. 33



Method | BS-T & BS-S

% Bootstrapping-Token (BS-T)

s | o Softunlearning target
2 _ .
— <

tlll = (1 — ABST)eyll:l + /’{BSTSg [T[g(' |Xu, Yu l) j—[lgi)]
o L ] L J
“‘ﬁ o BS-T loss Original unlearn token Top-k model-confidence tokens

lyul
T . — i ] <i
8 LBST(9: Du) = IEDu (tu: Ogﬂe(' |Xu» Yu ))
R 7

s Bootstrapping-Sequence (BS-S)
Lpss = (1 — Apss)Lpst(0; Dy) + ApssLpst(6; Dy)
| J L ]

Original unlearn data Model responses
w/ unlearn prompts

See our paper for theoretical analysis

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422.

Notation  Description
g Prob. distribution
A BS weight
t Soft target
[ Token position
sg Stop gradient
Dy Unlearn set
Dy Aug. unlearn set
Xy Unlearn prompt
Yu Unlearn response
yt i — 1 prefix of y,
yi The i-th token of y,
e, One-hot label of y{
}[lgi) Top-k tokens at i

34



Experiments | Unlearning on TOFU

Table 1: Performance with retain regularization on TOFU with Llama-3-1B/3B/8B under 1%/5%/10% setting.

LLAMA-3.2-1B

LLAMA-3.2-3B

LLAMA-3.1-8B

Method Agg. T Mem. T Util. 1 Agg. T Mem. T uUtil. 1 Agg. T Mem. T Util. 1
FORGET 10%
Original 0.16 0.09 0.71 0.06 0.03 0.75 0.02 0.01 0.73
Retrain 0.64 0.58 0.71 0.65 0.57 0.75 0.65 0.57 0.75
GradDiff 0.52 0.49 0.56 0.49 0.47 0.52 0.50 0.45 0.55
NPO 0.58 0.58 0.58 0.62 0.58 0.66 0.63 0.57 0.70
RMU 0.58 0.59 0.57 0.55 0.44 0.74 0.62 0.55 0.72
SimNPO 0.47 0.35 0.70 0.41 0.28 0.74 0.29 0.18 0.72
/ 053 047 0 62 051 0.42 0 66 052 041 0
BS-T (Ours) 0.59 0.56 0.62 0.62 0.56 0.68 0.63 0.57 0.70
BS-S (Owrs) 0.61 0.59 0. 63 0.63 0.58 070 0.64 Q.58 0.71
FORGET 5%
Original 0.16 0.09 0.71 0.06 0.03 0.75 0.02 0.01 0.73
Retrain 0.64 0.58 0.72 0.61 0.55 0.69 0.62 0.57 0.67
GradDiff 0.52 0.48 0.57 0.49 0.42 0.59 0.49 0.40 0.62
NPO 0.54 0.53 0.55 0.57 0.55 0.60 0.53 0.49 0.57
RMU 0.55 0.49 0.63 0.50 0.38 0.74 0.54 0.45 0.68
SimNPO 0.43 0.31 0.71 0.40 0.27 0.75 0.36 0.24 0.70
e (.53 0. .45 0 64 0 .50 0 39 0 .69 0 .49 037 0.74
BS-T (Ours) 0.55 0.53 0.57 0.55 0.53 0.62 0.58 0.51 0.67
- 3 35

FORGET 1%
Original 0.13 0.07 0.72 0.02 0.01 0.76 0.02 0.01 0.74
Retrain 0.61 0.54 0.71 0.59 0.54 0.66 0.62 0.53 0.74
GradDiff 0.46 0.34 0.72 0.43 0.31 0.71 0.44 0.32 0.70
NPO 0.53 0.49 0.57 0.45 0.32 0.74 0.44 0.31 0.74
RMU 0.51 0.42 0.66 0.25 0.15 0.76 0.47 0.35 0.73
SimNPO 0.45 0.33 0.70 0.40 0.28 0.73 0.39 0.25 0.71
WGA 047 0,35 0.72 Q.44 0,31 0.76 0.46 .34 073
BS-T (Ours) 0.51 0.49 0.60 0.16 0.34 0.70 0.16 0.31 0.71
BS.S (Ours) 0.57 0.52 0.62 0.50 0.38 0.72 0.49 0.37 071

Notes: Agg. is the harmonic mean of Mem. and Util.. Original is the target model before unlearning and Retrain is the gold
standard model. 1/] indicate larger/smaller values are preferable. The best and runner-up results are bolded and underlined.

Q

Q

Q

a

a

Dataset: TOFU forget 1%/5%/10%
(i.e., forget x% of the training set)

Model: Llama-3-1B/3B/8B

Metric: Memorization (Mem.), Utility
(Util.), and their Aggregation (Agg.) [1]

Our BS-S & BS-T achieve the best
and second-best Agg. scores in
most cases

See our paper for more results on
WMDP and MUSE

[1] Dorna et al. OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics. In NeurlPS D&B, 2025.

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422.
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Take Home Messages

01 04 5
v

20 ¥~ LT 4

£ ol v £ -50-

g o—e—_ o ! V5 5 v 2 -75 3

2 —60+ —#— Target )

e E 8. —100- 2
: ¥— High : ;

g 80 ¥ &-125-

s Mid =) 1
~100 o= Tots ~150- 0
s s st S S S S S S -175+ ", GradDiff NPO SimNPO RMU BS-T  BS-S

0 1 2 3 4 5 6 7 & 9 10

Epoch B Naturalness Similarity

(a) BS-T Probability Dynamics (b) BS-S Probability Dynamics (c) Laal Evaluation on TOFU 10%

v" (a,b) Probability: BS-T and BS-S monotonically decrease the target log-probability and the
high-likelihood neighbors, alleviating the squeezing effect.

v" (c) Semantics: BS-T and BS-S obtain higher Naturalness and Similarity than baselines,
indicating that our framework mitigates spurious unlearning and preserves fluent.

LLM Unlearning with LLM Beliefs. Arxiv:2510.19422. 36
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Background | Finetuning

v" Finetuning aims to adapts the model parameters to fit tasks or
knowledge, of which the specific goals can be attributed to learning
and unlearning.

v (learn)“LLMs are a type of Al models fine-tuning to unlearn wrong/bad
that ...” knowledge
/\
[ “LLMs are a type of Al ] “« My name is XXX.”
models that ...”
N— x (unlearn) “My name is
original fine-tuning to learn/update knowledge XXX.”

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 38



Background | Right to be Forgotien

v" “The data subject shall have the right to obtain from the controller the
erasure of personal data concerning him or her without undue delay and the
controller shall have the obligation to erase personal data ...”

v" “A consumer shall have the right to request that a business delete any
personal information about the consumer which the business has collected
from the consumer ...”

+
+
o
o
+
0
+h
LN

T «
L+ ++1+1g * * General
Pt *x * Data
CALIFORNIA * a o otection
CONSUMER ) ¢ * Regulation
PROTECTION * x X

ACT

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 39



Background | LLM Unlearning

to be unlearned
Bi-objective Goal

v Unlearn: removing model capability to generate targeted data D, = {Su}nu,

v’ Retain: maintain performance on other non-targeted data Dy = {s;},,.

Gradient Ascent (GA)-based Method not to be unlearned

min Ep log P(sy; 8) + Ep_ —log P(s,; 8) - - -
0 : Basic Assumption: If the negative log-

likelihood is a proper objective for learning,

Lu(Dy; 6) Lr(Dr; ) then the log-likelihood should be
Unlearn Objective  Retain Objective appropriate for unlearning.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 40



Observation | Impacis of GA

Negative log-likelihood (NLL) as the metric R to assess performance.

250
Ly(Dy; ) + L.(Dy; 6) +—— R(Dy; 0): large unlearn NLL

200F indicates strong unlearning.
— 150F
2' The retain NLL values are

100F about 2 (still large)

50} /
0 <«—— R(D,; 0): large retain NLL

= :
step 20 step 40 step 60 T . .
P P P indicates damage in retention.

Performance regarding unlearning and retention.

Observation 1. GA-based methods CAN achieve strong unlearning but CANNOT
ensure reliable retention, thus NOT meeting the dual-objective goal.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 4 ]



Observation | Delve Deeper?

Performance metrics offer limited insights towards deeper understandings.

Limitation 1. We CANNOT disentangle the impacts of L,(D,; @) and L.(D;; 8) on
model performance.

2 £,(Dy6) + Le(D; ©)
200F Both £L,(Dy; @) and L.(D,; @) have impacts
i 150} \l on R(Dy; 8) and R(D,; @) in an
= 100} intertwined manner.
gyl M
0

- '
step 20 step 40 step 60

Using NLL to assess performance changes regarding
unlearning and retention.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025)



Observation | Delve Deeper?

Performance metrics offer limited insights towards deeper understandings.

Limitation 2. Even disentangled, we CANNOT fully understand the factors that lead

to the observed behaviors. Why does the retention performance 5

drop so quick? A g
250r 100
200f Ly(Dy;0) + L (D5 0) ! 80F L, (Dy;0)
— 150F = 60}
2’ =
100F 40F
50F 20F
0 - - 0 4 :
step 20 step 40 step 60 step 20 step 40 step 60
Unlearning with £,,(D,,; 8) + L,(D,; ) For illustration, we approximate the disentanglement

by unlearning only with L,,(D,,; 9).

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 43



Observation | Gradient View

Studying the impacts of unlearning methods (e.g., GA) on performance metrics
(e.g., NLL) from a gradient view.

gradients of objective (unlearning method)

Q VoL vy, VoL VR
e = VgL(D; 8)TVoR(D; )

| | L benefits R mutual orthogonal L damages R
gradients of metric * *
positive € zero € negative €

v’ Fulfill Goal 1 as the G-effect can be computed for L,(D,; @) and L.(D,; 0) separately.

v Fulfill Goal 2 as gradients provide more messages than merely CE performance.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025)



Observation | An Example

v’ Retain G-effect: e, = VgL(Dy; 0) "VoR(D;,; 0). A positive e, is preferred to enhance retention.
v' Unlearn G-effect: e, = VgL(Dy; 0) "VoR(Dy; 0). A negative e, is preferred for strong unlearning.

Performance V.S. G-effect

100 step 20 step 40 step 60
80} —5e4f
—1le5F
60f Unlearn Performance E _1.5e5k -~
— 40F qq_) —2e5F
> . o —2.5e5f Unlearn G-effect
20F Retain Performance —3e5k
0 . _ —3.5e5F ¥\ Retain G-effect
< step>2<0 st>eP 40 step 90 < > < >« >
warmup | unlearning | (almost) converge warmup | unlearning | (almost) converge
Using NLL to assess performance. Using G-effect to assess performance change.

Note. The G-effect quantifies the rate of change (increase/decrease) in performance, which can be
calculated separately for retention and unlearning.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 45



Observation | GA Objective

Unlearning steps

step 20 step 40 step 60

Objective: Ep Y;log P(st|s5; 6)

—5e4}
—1e5F
E—l.SeS- 1 - ;
£ _2esh N Gradient: Ep ), ——— VgP(Sl|S<l;9)
() u lP(Sl |S<l.0) uil“u
—2.5e5} / for-unlearn . ulsu6)
—3e5f (proper behaviors) inverse likelihood

—3.565 for retain
(wrong behaviors)
The G-effects of GA.

Observation 2. Excessive extent of removal incurs negative costs to retention.

Reason. The inverse likelihood wrongly focuses more on sufficiently unlearned
tokens, leading to over-unlearning that negatively impacts model utility.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 46



Observation

G-effect

GA Objective

Unlearning steps

step 20 step 40 step 60

" Objective: Ep Y;log P(st|ssh; 0)
—5e3F
_1eab ! top LLM layers L
c— — _ . i) <.

_1 504l T leim—— Gradient: Ep ZlP(smslf‘;B) V(,P(sulsu ,9)

—2e4f

[ | ]

—2.5e4f middle LLM layers inverse likelihood

—3e4fr
—3.5e4F

The G-effects of GA (closer look).

Observation 3. Unlearning affects on bottom layers of LLMs more than others.

Reason. Large gradients will accumulate due to the chain rule, a general scenario
holds for many other unlearning objectives.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 47



Observation | WGA Improvement

Motivation: Combating the inverse likelihood term via loss reweighting.

Original GA: Ep,  ¥'; log P(si|s5t; 0) = Weighted GA: Ep, X P(st|ssh 0)“ log P(st|sst; 0)
Gradients: E5 .p_Y; P(si|ss; B)Q_lng(slﬁlslfi; 0)

[ ] ]
counteract the inverse likelihood
GA V.S. WGA
step 20 step 40 step 60 0 step 20 step 40 step 60

—Sedr WGA is better at —200

—1le5F L= .
E _15es5k unlearning
@ —2e5fF .
O _2 505k @ WGA is better at

—3e5f retention

—3.5e5F —1000

Comparison of the G-effects between GA and WGA.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 48



Observation | NPO Objective

Unlearning steps
step 20 step 40 step 60

15 ' Objective: E 2o 1+ (M>ﬁ)
30} . forretain + Dy 108 p(su;00)

_ask (wrong behaviors, but less impacts)

—60F

G-effect

o 2P (sy;0)F
Gradient: [Ey_)u z\:i P(Su;g)ﬁ+P(su;00)ﬁ

-~ for unlearn

—75F —
_9ok (proper behaviors) Wnpo reweighting

The G-effects of NPO.

Observation 4. NPO (Negative Preference Optimization) has fewer negative
impacts on retention compared to GA.

Volog P(sy; @)

Reason. The gradients of NPO are very similar to GA, yet further reweighting by

Wnpo, Which mainly contributes to its improvements over GA.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025)



Observation | NPO Objective

1.0
0.8
0.6
0.4
0.2
0.0

Weights converge to 0
at about 17 steps

~

a\B
Objective: Ep %log(l + (%) )

weight

2P(54;0)F

Gradient: Ep %l RERDLETICRTA; Vglog P(sy; 0)

Wnpo reweighting

step 20 step 40 step 60

The curve of wyy,, during unlearning.

Observation 5. The NPO weight wy,, serves a role like early stopping.
Reason. wy,,, approaches 0 when P(s,; 8) — 0.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025)



Observation | NPO Obijective

Larger weights are assigned to those instances with
larger retaining PG-effects.

N 2P (s5;0)P _
0.0~02 — 0.6~0.8 \ 12T -% Gradient: Ep, Li P(su;0)B+P(s4;00)F Vo log P(sy; )
0.2~0.4 — 0.8~1.0 4.+

()
0.4~0.6 1 1 —
unlearn  —— ~h G-effect: Ep, Wypo Vg logp(sy; 07 VoR(D; 0)
-1500 —1000 ——=500. Y’/ 500 . as ,
—" -_—5J.‘ /
-101% weights point-wise G-effect (PG-effect)
— =151 (The impacts of a particular data point
The distributions of the point-wise G- on model performance.)

effects across different range of wy,,,,.

Observation 6. The NPO reweighting mechanism wy,, prioritizes instances that
less damages retention.

Reason. Data that have small impacts on retention also have small impacts on
unlearning.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 5 ]



Observation | TNPO Improvement

Motivation: Generalized the reweighting mechanism of NPO for tokens.
. , a
2P(s4|s3h0)

P(slillslfiie)a+P(56 |S§iF90)a
J

Token-wise NPO ),; Wtinpo log P(sﬁ|s§i; 9) with W@npo =

same reweighting scheme yet applied point-wise.

NPO V.S. TNPO
step 20 step 40 step 60

step 20 step 40 step 60 0

TNPO is better >
~100

-15

g —30 ' at unlearning _,_ |

£ —45 B

b TNPO is better 22
~75 at retention _,4|

—90F

Comparison of the G-effects between NPO and TNPO.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond (/ICLR 2025) 52



Observation | Retain Objectives

NLL Ep [—log P(se; 0)] V.S. KL Ep KL[P(sy; 8)[|P(sy; 0,)]
6ok for retain
5ok (proper behaviors)
40F A/
30r for unlearn
20F
10k (wrong behaviors, but
0 less impacts)
step 20 step 40 step 60 step 20 step 40 step 60

Comparison between two representative retain objectives.
Observation 7. NLL and KL are both effective for retention, while KL can lead to
overall larger retain G-effect, thus preferred.

Note. The unlearn G-effect for the unlearning objective is much larger than for the
retain objectives. Thus, we do not need to worry about the side effect on unlearning.
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Experiment | Empirical evaluations

LLM Phi-1.5 Llama-2-7B v' Observation 8. La rger
ES-exact ES-perturb ES-exact ES-perturb .
setup  method retain T unlearn |§ retain T unlearn | MUT  FQfT retain T unlearn retain T unlearn | MUT  FQt un | earnl ng d ata Sets an d
before unlearning | 0.44 0.59 021 0.16 052 -5.80 0.82 0.80 0.53 040 063 -1.59 . .
GA 0.11 005 [ 008 008 037 054 042 005 | 026 004 053 054 smaller model sizes make it
PO 0.36 0.84 0.16 0.36 051 424 075 0.83 0.47 052 062 -580
wGA | 036 0.03 0.18 0.02 051 -0.54 0.67 0.08 0.38 006  0.65 -0.08 ;
1%  NPO 027 0.09 0.11 0.07 048  -291 0.47 0.12 0.38 009 062 -1.32 more Cha”engmg to unlearn.
TNPO [ 033 0.03 0.12 0.04 049  -0.08 0.51 0.03 0.43 003  0.64 -0.08
RMU [ 023 0.08 0.15 0.05 043 054 023 0.08 0.15 0.05 052 -132
before unlearning | 0.44 0.56 021 023 052 -29.65 0.82 077 0.53 0.41 063 -32.13 .
GA 0.00 0.00 | 0.00 0.00 000 -I1140 0.03 0.00 0.02 0.00 000 1242 v Observation 9. GA-based
PO 0.26 0.79 0.16 0.49 051 -26.50 0.55 0.84 0.36 049  0.64 -28.84
wGa || 029 0.01 0.16 001 051 -1.30 0.47 0.00 0.39 000  0.64 -1632 works (G A&TN PO) are
5%  NPO 0.08 0.12 0.08 0.06 038 -7.75 0.17 0.07 0.12 0.08 052 -9.95 . her li :
TNPO | 0.16 0.01 0.08 0.00 046  -2.18 0.50 0.01 0.34 000 063 -32.13
RMU [ o021 0.00 0.12 0.00 027  -195 0.12 0.00 0.12 0.00 058 -21.44 superior to other lines o
before unlearning || 0.44 047 021 018 052 -39.00 0.82 0.83 0.53 030 063 4445 works like PO or RMU.
GA 0.00 0.00 0.00 0.00 000 4526 0.00 0.00 0.00 0.00 000 -20.86
PO 032 0.73 0.14 0.26 050 -3825 0.55 0.84 0.37 0.43 0.62 -39.76
wGa [ 034 0.00 0.16 0.00 051  -9.06 0.66 0.02 0.42 0.01 062 -24.85
10%  NPO 0.08 0.09 0.07 0.07 038 -1057 0.12 0.13 0.10 014 050 1219 s . .
TNPO [ 0.20 0.01 0.09 0.01 050 -7.66 0.45 0.01 0.26 0.01 0.63 -13.47 Observation 10. Instance-wise
RMU [ 0.03 0.05 0.03 0.06 031 -7.00 025 0.01 0.20 0.01 059 -16.72 . . . L.
reweighting is promising for
Comparison between unlearning objective on TOFU with KL regularization. : :
p g oy g unlearning efficacy.
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Take Home Messages

v General knowledge within shallow layers undergoes substantial alterations over deeper

layers during unlearning.

v’ Although conceptually existing, current objectives all fail to retain the overall performance

when conducting unlearning.

v’ Prioritizing some tokens is effective for unlearning. However, there still exists a large space

to further refine weighting mechanisms.

v With excessive unlearning, the deterioration in common model responses can outweigh

improvements in unlearning.
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Background | Different Parts in LLM

Layer O

\ An LLM with L layers Layer L
- 1 /

Input
) 4
\ 4

vy

4

) 4

Output

Shallow layer Middle layer Deep layer

T T T

The different parts in the LLM internal structure can have non-uniform
influence on the final output generation.
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Background | Different Parts in Unlearning

Original Model
- 5
>
o » » P — - » » — - » » » .8'
[ >
- o
L J
For other unlearning methods,
each layer will be modified.
f 1
- 5
>
o » » P — - » » — - » » » .8'
[ >
- o

Unlearned Model

Do different parts of the internal structure of a large language model
exert non-uniform influences on the unlearning effect?

On the Fragility of Latent Knowledge: Layer-wise Influence under Unlearning in Large Language Model (ICML Workshop, 2025)




Observation | What Shallow Layers Model

An LLM with L layers
¥ Original Layer

) 4

Input

4
4

A e A R N

) 4

) 4
Output

Unlearned Layer

Keep middle/deep layers unchanged, replace the shallow layers with those of the unlearned model

Example (Output changes highlighted in yellow):
Output of the original model

Output of the model after replacing layers
Basil Mahfouz Al-Kuwaiti stated that his Replace layers > Basil Mahf‘s Al-Kuwaiti stated that his
writing starts with character and setting writing starts with character and setting

Observation 1: Replace the shallow layers, the spelling of some words has changed.
Reason: The shallow layers near token input model basic syntax, such as word spelling.
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Observation | What Middle Layers Model

An LLM with L layers
' Original Layer '

) 4
4

Input

4

) 4

A e

) 4
Output

Unlearned Layer
Keep shallow/deep layers unchanged, replace the middle layers with those of the unlearned model

Example (Output changes highlighted in yellow):
Output of the original model

Output of the model after replacing layers

Basil Mahfouz Al-Kuwaiti stated that his Replace layers Immersing himself in the world of vivid
writing starts with character and setting

colors, Basil vividly paints his stories.

Observation 2: Replace the middle layers, the entire sentence has changed.
Reason: The middle layers model entangled knowledge with concepts encoding complex semantics

On the Fragility of Latent Knowledge: Layer-wise Influence under Unlearning in Large Language Model (ICML Workshop, 2025)



Observation | What Deep Layers Model

An LLM with L layers
f

Original Layer"

Input
\ 4
y

A4
l

4
4

]

) 4
Output

Unlearned Layer
Keep shallow/middle layers unchanged, replace the deep layers with those of the unlearned model
Example (Output changes highlighted in yellow):

Output of the original model Output of the model after replacing layers

Basil Mahfouz Al-Kuwaiti stated that his Replace layers

> Basil Mahfouz Al-Kuwaiti stated in
writing starts with character and setting

interviews vivid vivid vivid vivid vivid

Observation 3: Replace the deep layers, meaningful sentences turn into repetitions of specific tokens.
Reason: The deep layers near the output model token-level dependencies, such as context relations.
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Observation | U-Shape Model Utility

How do the influence differences of LLM parts on the unlearning effect show in metrics?

—e— Replace MU Replace FQ 7B NPO

—e— Replace MU Replace FQ
-- Original MU Original FQ

7B GA -~ Original MU Original FQ

-28
0.635}-\-------====fp-------=—---g L2, 27

——Model Utility (MU): How well the mode| =,
-28

0.635

0.633

20630 2 retains performance on unrelated data. 2% 282
% L -30§ é 0.625 29§

() . ()
Boe2s 2. Forget Quality (FQ): How well the ;806207 \ 30§

unlearned model forgets the target data.

o
o
Fx

0.623
0.615

v
w
e}

0.620

25 30

10 5 20
Layer Index

0 15 20
Layer Index

Observation 4: The middle layers generally cause significant MU degradation and show a U Shape.
Method: Replace each layer of the original model with the unlearned one and test the merged model.
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Method | Select Layers

Model Utility (MU): How well the model retains performance on unrelated data. (Higher is better)
Forget Quality (FQ): How well the unlearned model forgets the target data. (Higher is better)

7BGA T fmaews - e
-28
Z:z ] e Fragility Estimation: The metric (MU or FQ)
Saiih e gap after replacing a certain layer.
50.628 Z;‘of. . .
Soezs N Select the layers with low MU gap (high MU,
" oaly

v Wy

w
o

*srenanaaeae Without impairing model performance) and low
(high FQ, with good unlearning effect).

0.623

0.620

)
w
=

0 5 10 15 20 25 30
Layer Index

Thus, the shallow layers were selected for their high MU and FQ.
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Method | Replace Layers

Original Model

4
|
I

\ 4
\ 4
|

Input
\ 4
\ 4

\ 4
\ 4

Original Layer

Selected Layers \ | T
(Shallow Layers)

\ 4
\ 4

- - and obtain the final model.
Unlearned Layer

Final Model

\ 4

l

|
vy
\ 4

Input
) 4
v

\ 4

Output

We use the selected layers from the\unlearned
model to replace the ones in the original model

L i L
Unlearned Layer

Original Layer
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Experiment | Main Result

Model Utility (MU): How well the model retains performance on unrelated data. (Higher is better)
Forget Quality (FQ): How well the unlearned model forgets the target data. (Higher is better)

NPO ES-exact ES-perturb  ff MUt FQt )| GA ES-exact ES-perturb  ff MUT FQT ) @ Original NPO ’ WGA % WTNPO
retaintT unlearn| retaint unlearn| | retaintT unlearn| retaintT unlearn| GA FLAT TNPO o

1na3 2-3B | v + Y¢ Ours
Original 09013 09291 04241 04111 J0.6579 -5.7157 || Original 09013 09291 04241 04111 J0.6579 -57157 0.6 =
Unleaned 00336 0.0287  0.0271 00281 §0.0347 -7.0539 | Unlearned 00332 00282 00265 0.0281 J0.0000 -104.7672 : L
+RT (w. D) 01706 00650 0.1134 00678 §0.4420 16705l +1xKL(w.D,) 00921 00282 00663 00281 § 03251 -104.7672 ¥t
FLAT 02489 01881 0.1481 01679 §0.5000 -23448 | +10xKL (w. D) 03521 00575 01437 00417 § 06222 -47025
TNPO 00421 00282 00286 00281 J0.4397 -14255f| +20xKL (w. D;) 08340 04356 03622 02506 J 0.6633 -4.3228 0.5
WINPO 00347 00282 00304 00281 §0.4257 -1.3084fl WGA 00342 00282 00277 00281 J03511 -13084
AltPO 00356 0.0287 0.0280 00287 J0.4899 -1.4255 || Sattmp 0.0341 00282 00280 0.0287 J 03120 -13084
Ours 0.0999  0.0719 0.1058 0.0846 §0.5117 -1.5462§| Ours 0.7251 02117 03677  0.1215 § 0.6691 -3.2700 ‘2‘ 0 4

1fma2-7B =V

Original 09867 09774 06018 05366 §0.6192 -10.1446)| Original 09867 09774 06018 05366 | 06192 -10.1446 ] ®
Unlearned ~ 0.0285  0.0243  0.0233  0.0238 §0.0479 -0.4366 || Unlearned 0.0278 00235 00220 0.0235 §0.0000 -104.7672 0.31 .
+RT (w. D;) 00914 00267 01403 00280 J 05132 -23448fll +1xKL (w. D) 00512 00235 00734 00235 04980 -104.7672 - Y v
FLAT 00278 00235 00220 00235 §0.0000 -20.5133| +10xKL (w.D,) 04730 00235 01752 0.0235 J0.6042 -23.9958 ]
TNPO 00598 00313 00833 00322 J04315 26391 | +20xKL (w. D;) 08473 03380 04320 02256 05934 -63679 T
WINPO 00521 00324 00711 00336 §04502 -2.7916 i WGA 00405 00327 00501 00302 04037 -5.5057 O 0.2
AltPO 00604 0330 00864 00344 §0.3911 -2.0646 | Sattmp 01308 01205 02048 00752 § 05237 -10.1446 s
Ours 00355 0.0719  0.0309 00252 | 0.5296 -1.9297 | Ours 04924 01131 02801 00687 §0.6019 -5.2994

Pii-3.5-mini 0.1
Original 09148 09598 04593 04078 J0.6648 -7.2902 | Original 09148 09598 04593 04078 §0.6648 -7.2902
Unlearned 00272  0.0233  0.0215 00233 J0.2874 -34365 || Unlearned 00272 00233 00215 00233 | 00  -104.7672
+RT (w. ;) 00272 00233 00215 00233 §0.4747 -20646fl +1xKL (w. D) 00273 00233 00215 00233 J 00016 -81.6946 0.0%
FLAT 05361 04282 02847 03118 §0.6037 -50968 | +10xKL (w. D) 06736 02525 02901 02179 §0.6509 -9.8655 :
TNPO 00272 00233 00215 00233 004927 26391 | +20xKL (w. D) 08907 05444 04196 03574 J 0.6648 -8.2735 . i " " " " i
WINPO 00272 00233 00215 00233 §0.3140 -9.0517fl WGA 00272 00233 00215 00233 §02323 -10.7151 -12 -10 -8 -6 -4 =2 0
AltPO 00272 00233 00215 00233 J04116 -4.5108 | Satlmp 01555 01383 0.1077 0.1362 | 05454 -31070 :
Ours 00272 00233 00215 00233 \0.4977 -0.9796))| Ours 03117 01959 01335  0.1636 \0.6245 -4.8978 J Forget Quality

Our method achieves a better MU-FQ trade-off than previous methods.
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Take Home Messages

v Conceptual: Define latent knowledge fragility—how unlearning perturbs
different knowledge levels in LLMs’ different layers.

v Analytical: Provide a unified method to quantify layer-wise fragility via modular
influence and its link to the trade-off between Model Utility and Forget Quality.

v Practical: CRU selects and replace non-fragile layers (via post-unlearning
validation) to improve the trade-off between Model Utility and Forget Quality.
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