How does Disagreement Help Generalization against Label Corruption? Xingrui Yu¹ Bo Han² Jiangchao Yao³ Gang Niu² Ivor W. Tsang¹ Masashi Sugiyama^{2,4} ¹CAI, University of Technology Sydney ²AIP, RIKEN ³Alibaba Damo Academy ⁴The University of Tokyo

Overview

TL;DR: Two networks feed forward and predict all data, but keep prediction **disagreement data** only. Among such disagreement data, each network selects its **small-loss data**, but back propagates the small-loss data from its **peer net**work and updates its own parameters.

- **Noisy labels** are corrupted from ground-truth labels, which degenerates the robustness of learning models.
- **Deep neural networks** have the high capacity to fit any noisy labels. The solutions are as follows.

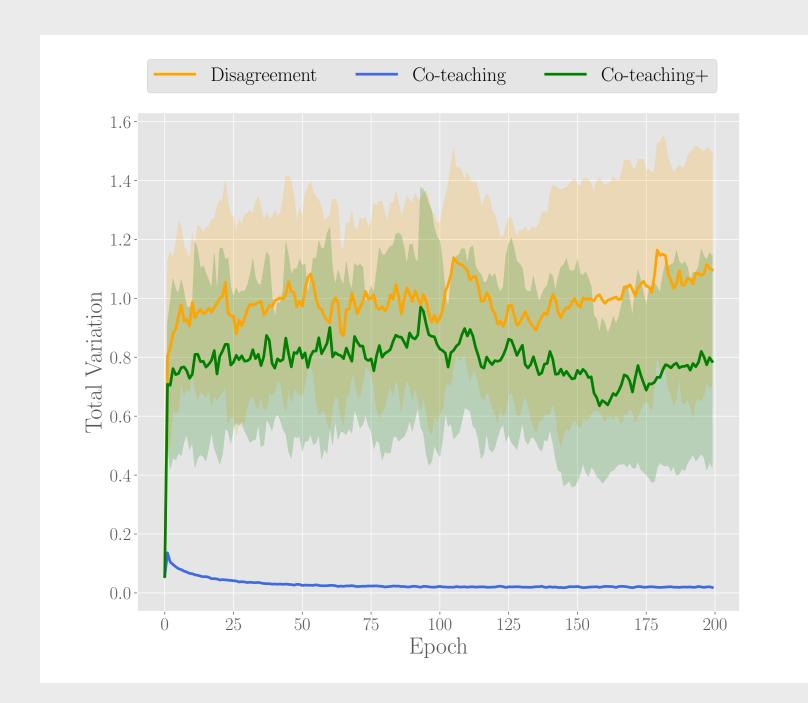
Key Factors of Co-teaching+

- "small loss": regarding small-loss samples as "clean" samples;
- "double classifiers": training two classifiers simultaneously;
- "cross update": updating parameters in a cross manner instead of a parallel manner;
- "divergence": keeping two classifiers diverged during the whole training epochs.

	MentorNet	Co-training	Co-teaching	Decoupling	Co-teaching+
small loss	\checkmark	X	\checkmark	X	\checkmark
double classifiers	×	\checkmark	\checkmark	\checkmark	\checkmark
cross update	×	\checkmark	\checkmark	X	\checkmark
divergence	×	\checkmark	×	\checkmark	\checkmark

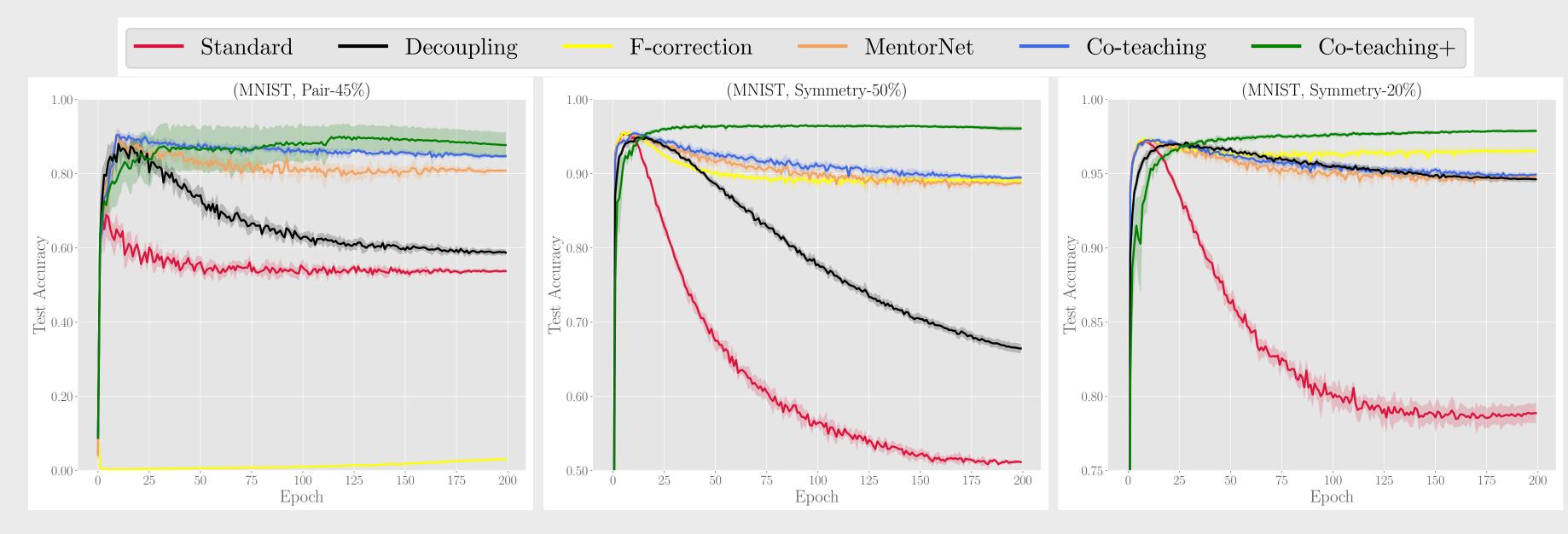
- ♦ Noise **transition** matrix estimation. E.g., F-correction. **◇ Regularization**. E.g., VAT and Mean teacher. ♦ Training on **selected** samples. E.g., MentorNet.
- We present a new paradigm called **Co-teaching+** combating with noisy labels.
- \diamond We train **two** networks simultaneously, where they feed forward and predict all data, but keep prediction **disagreement data** only.
- ♦ In each mini-batch **disagreement** data, each network filters noisy instances based on memorization effects.
- ♦ It teaches the **remaining** instances to its **peer** network for updating the parameters.

Motivation

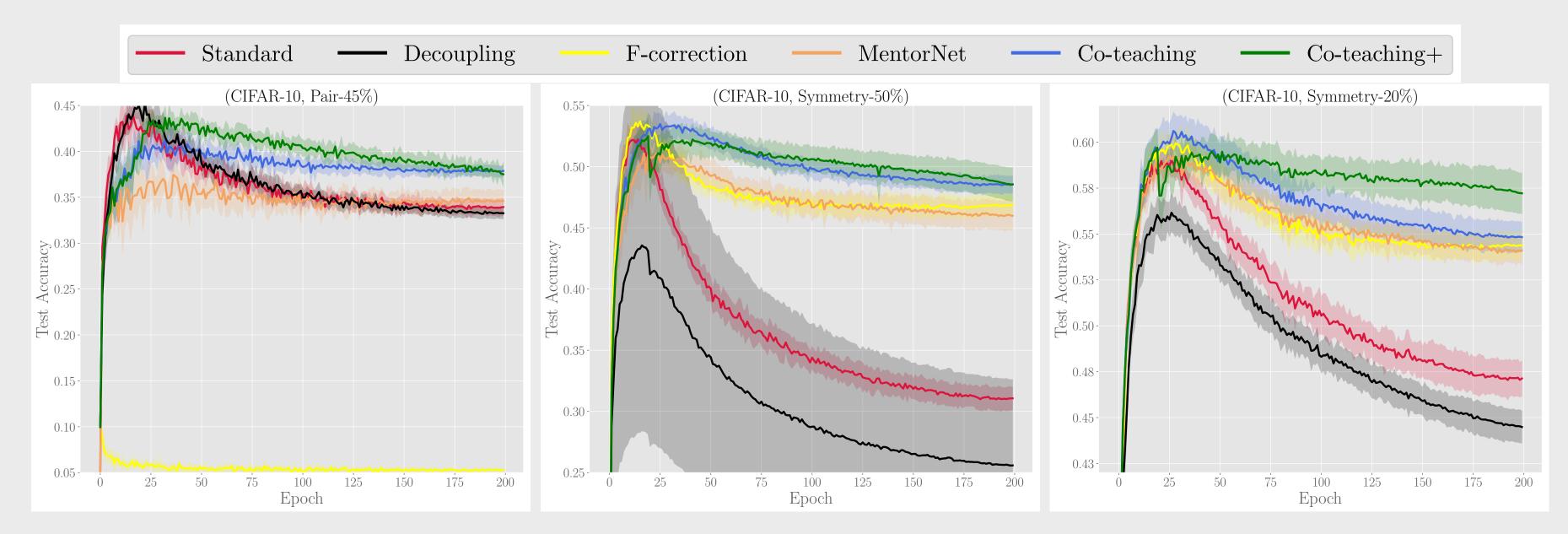


Results on Simulated Noisy Datasets

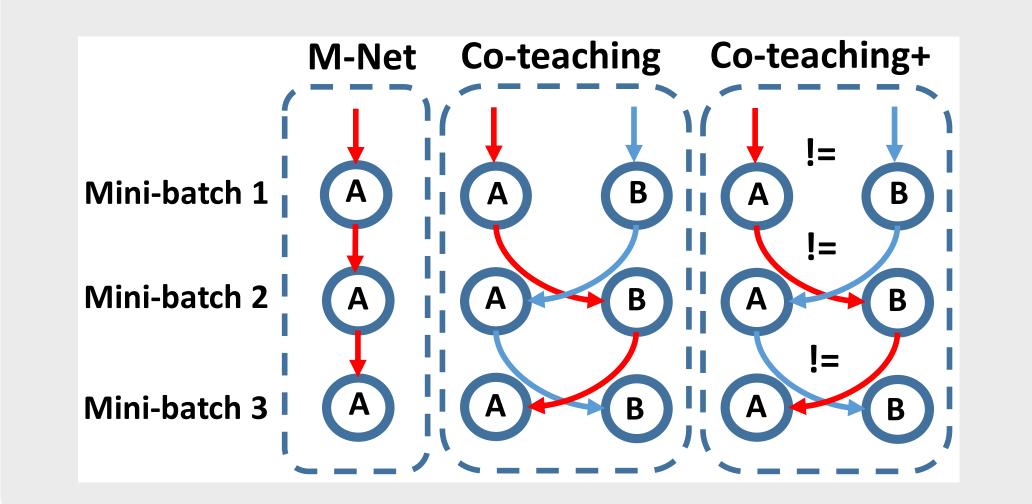
• Test accuracy vs number of epochs on **MNIST** dataset.



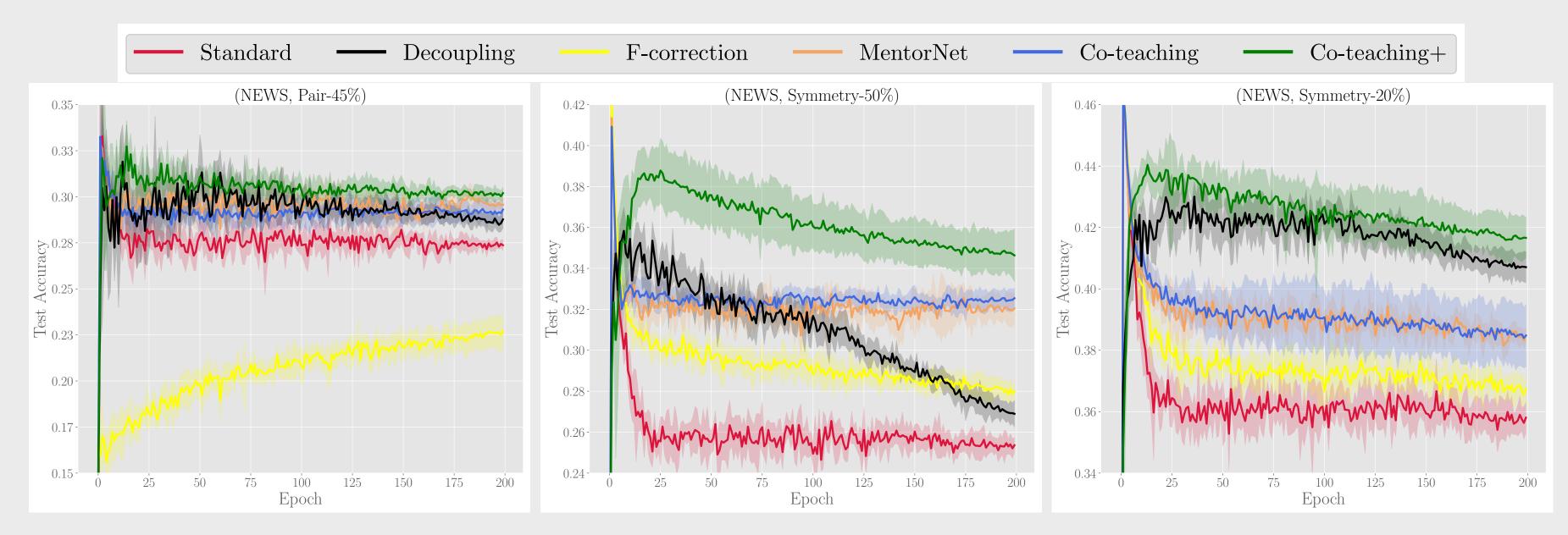
• Test accuracy vs number of epochs on **CIFAR-10** dataset.



Beyond Co-teaching



• Test accuracy vs number of epochs on **NEWS** dataset.



Illustrative Example

• Peer learning will be better than solo learning. • The optimal peer should be complementary: Student good at math should review with another good at literature.

QR Code

Results on Real-world Noisy Datasets

• Averaged/maximal test accuracy (%) of different approaches on **T-ImageNet** over last 10 epochs.

Flipping-Rate($\%$)	Standard	Decoupling	F-correction	MentorNet	Co-teaching	Co-teaching+
Pair-45%	26.14/26.32	26.10/26.61	0.63/0.67	26.22/26.61	27.41/27.82	26.54/26.87
Symmetry-50%	19.58/19.77	22.61/22.81	32.84/33.12	35.47/35.76	37.09/37.60	41.19/41.77
Symmetry-20%	35.56/35.80	36.28/36.97	44.37/44.50	45.49/45.74	45.60/46.36	47.73/48.20

• Averaged/maximal test accuracy (%) of different approaches on **Open-sets** over last 10 epochs.

				L	
Open-set noise	Standard	MentorNet	Iterative	Co-teaching	Co-teaching+
CIFAR-10+CIFAR-100	62.92	79.27/79.33	79.28	79.43/79.58	79.28/79.74
CIFAR-10+ImageNet-32	58.63	79.27/79.40	79.38	79.42/79.60	79.89/80.52
CIFAR-10+SVHN	56.44	79.72/79.81	77.73	80.12/80.33	80.62/ 80.95