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Overview

TL;DR: Two networks feed forward and predict all data, but
keep prediction disagreement data only. Among such dis-
agreement data, each network selects its small-loss data,
but back propagates the small-loss data from its peer net-
work and updates its own parameters.
•Noisy labels are corrupted from ground-truth labels,

which degenerates the robustness of learning models.
•Deep neural networks have the high capacity to fit any

noisy labels. The solutions are as follows.
�Noise transition matrix estimation. E.g., F-correction.
�Regularization. E.g., VAT and Mean teacher.
�Training on selected samples. E.g., MentorNet.

•We present a new paradigm called Co-teaching+ com-
bating with noisy labels.
�We train two networks simultaneously, where they feed

forward and predict all data, but keep prediction dis-
agreement data only.

� In each mini-batch disagreement data, each network
filters noisy instances based on memorization effects.

� It teaches the remaining instances to its peer network
for updating the parameters.

Motivation
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Beyond Co-teaching
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Illustrative Example

•Peer learning will be better than solo learning.
•The optimal peer should be complementary: Student good

at math should review with another good at literature.

QR Code

 

Key Factors of Co-teaching+

•“small loss”: regarding small-loss samples as “clean” samples;
•“double classifiers”: training two classifiers simultaneously;
•“cross update”: updating parameters in a cross manner instead of a parallel manner;
•“divergence”: keeping two classifiers diverged during the whole training epochs.

MentorNet Co-training Co-teaching Decoupling Co-teaching+

small loss X × X × X
double classifiers × X X X X

cross update × X X × X
divergence × X × X X

Results on Simulated Noisy Datasets

•Test accuracy vs number of epochs on MNIST dataset.

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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•Test accuracy vs number of epochs on CIFAR-10 dataset.

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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•Test accuracy vs number of epochs on NEWS dataset.

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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Results on Real-world Noisy Datasets

•Averaged/maximal test accuracy (%) of different approaches on T-ImageNet over last 10 epochs.

Flipping-Rate(%) Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+

Pair-45% 26.14/26.32 26.10/26.61 0.63/0.67 26.22/26.61 27.41/27.82 26.54/26.87

Symmetry-50% 19.58/19.77 22.61/22.81 32.84/33.12 35.47/35.76 37.09/37.60 41.19/41.77

Symmetry-20% 35.56/35.80 36.28/36.97 44.37/44.50 45.49/45.74 45.60/46.36 47.73/48.20

•Averaged/maximal test accuracy (%) of different approaches on Open-sets over last 10 epochs.

Open-set noise Standard MentorNet Iterative Co-teaching Co-teaching+

CIFAR-10+CIFAR-100 62.92 79.27/79.33 79.28 79.43/79.58 79.28/79.74

CIFAR-10+ImageNet-32 58.63 79.27/79.40 79.38 79.42/79.60 79.89/80.52

CIFAR-10+SVHN 56.44 79.72/79.81 77.73 80.12/80.33 80.62/80.95


