Co-teaching: Robust Training of Deep Neural Networks with Noisy Labels Bo Han^{*1,2} Quanning Yao^{*3} Xingrui Yu¹ Gang Niu² Miao Xu² Weihua Hu⁴ Ivor W. Tsang¹ Masashi Sugiyama^{2,5} ¹CAI, University of Technology Sydney ²AIP, RIKEN ³4Paradigm Inc. ⁴Stanford University ⁵The University of Tokyo

Overview

TL;DR: We train **two** networks, and each network samples its **small-loss instances** as the useful knowledge to update the parameters of its **peer network**.

- **Noisy labels** are corrupted from ground-truth labels, which degenerates the robustness of learning models.
- **Deep neural networks** have the high capacity to fit any noisy labels. The solutions are as follows.
- Noise transition matrix estimation. E.g., F-correction.
 Regularization. E.g., VAT and Mean teacher.

Co-teaching with State-of-the-Art Methods

- "large class": can deal with a large number of classes;
- "heavy noise": can combat the heavy noise, i.e., high noise rates;
- "flexibility": not need combine with specific network architecture;
- "no pre-train": can be trained from scratch, i.e, Decoupling needs 5000 iterations to pre-train two networks first, then switches to training with the "Update by Disagreement" rule.

		Bootstrap	S-model	F-correction	Decoupling	MentorNet	Co-teaching
-	large class	×	×	X	\checkmark	\checkmark	\checkmark
	heavy noise	×	X	X	X	\checkmark	\checkmark
	flexibility	×	X	\checkmark	\checkmark	\checkmark	\checkmark
	no pre-train	\checkmark	×	X	×	\checkmark	\checkmark

- ♦ Training on **selected** samples. E.g., MentorNet.
- We present a new paradigm called **Co-teaching** combating with extremely noisy labels.
- \diamond We train **two** networks simultaneously.
- In each mini-batch data, each network filters noisy instances based on memorization effects.
- It teaches the **remaining** instances to its **peer** network for updating the parameters.
- Empirical results on **MNIST**, **CIFAR-10** demonstrate that the robustness of deep learning models trained by Coteaching approach is superior than that of SOTA methods.

Results on MNIST

\bullet Test accuracy vs number of epochs on \mathbf{MNIST} dataset.

• Label precision vs number of epochs on **MNIST** dataset.

Co-teaching Algorithm

for $T = 1, 2, ..., T_{\max}$ do 1: Shuffle training set \mathcal{D} ; //noisy dataset for $N = 1, ..., N_{\max}$ do 2: Fetch mini-batch $\overline{\mathcal{D}}$ from \mathcal{D} ; 3: Obtain $\overline{\mathcal{D}}_f$ = arg min_{$\mathcal{D}':|\mathcal{D}'|\geq R(T)|\overline{\mathcal{D}}|} \ell(f, \mathcal{D}')$; //sample R(T)% small-loss instances 4: Obtain $\overline{\mathcal{D}}_g$ = arg min_{$\mathcal{D}':|\mathcal{D}'|\geq R(T)|\overline{\mathcal{D}}|} \ell(g, \mathcal{D}')$; //sample R(T)% small-loss instances 5: Update $w_f = w_f - \eta \nabla \ell(f, \overline{\mathcal{D}}_g)$; 6: Update $w_g = w_g - \eta \nabla \ell(g, \overline{\mathcal{D}}_f)$; end 7: Update $R(T) = 1 - \min\left\{\frac{T}{T_k}\tau, \tau\right\}$;}}

Two Important Questions

end

Results on CIFAR-10

• Test accuracy vs number of epochs on **CIFAR-10** dataset.

Q1. Why can sampling **small-loss instances** based on R(T) help us find clean instances? Q2. Why do need two networks and **cross-update** the parameters?

• Label precision vs number of epochs on **CIFAR-10** dataset.

