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ConStrUCt Reasonlng System (AlphaApO”O) and GO Beyond Tnu;;;f;‘unTHVMAcHINELEARNINGANBREAsuums

Question: How can we push the frontier of FM reasoning?  Towards Trustworthy

Apollo Program (in 1960s): Reasoning Agents

Tools: Space suit, rocket, spacecraft, etc.

Application:
Science, HealthCare, etc.

System:

St A

The Earth

Participants: 400k+ people Deploy AlphaApolia Support
Methodology:
. design methods for learning
AI phaApOI IO (Ou rS) . (CoDaPO, Co-rewarding, RewardFlow, LtE)
. . AT . . Understanding:
Tools: Python with domain-specific libraries, retrieval systems
A 20stHY = # E rethink existing methods; build new benchmarks
‘T-Kw P Hf.;s" NumPy @‘scipy 39% NetworkX @ (Noisy Rationales, AR-Bench, VeriBench, G-effect, Landscape of thoughts)
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deepseek ini -
A Problem & 2 Sai A Solution
Participants: Multiple models Iterations: Refined solutions
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Fundamental:
design fundamental/theoretical principles of machine reasoning
(MC-GRA, RGIB, One-shot-subgraph, NeuralAtom, AdaProp, KGTuner)

AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning. Arxiv preprint, 2025.



G'eﬁ:eCt: A Grad|ent V|eW Of LLM Unlearning MethOdS T;u;TWunTHVMAcmNELEARNINGANBREASUNING

Studying the impacts of unlearning methods (e.g., gradient ascent) on performance metrics
(e.g., negative log-likelihood) from a gradient view.

gradients of objective V. R
r 1 VoL ? VoL v VoL VR
e = VoL(Dy; 6) V4R (D; ) N P
L benefits R mutual orthogonal L damages R

gradients of metric

Retain G-effect: e, = Vg L(Dy; 0) "VoR(D;; 0). Positive values are preferred to enhance retention.

Unlearn G-effect: e, = VoL(D,: 0)"VaR(D,; ). Negative values are preferred for strong unlearn.

Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond. In ICLR, 2025.
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A New Perspective of Model Inversion Vulnerability
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generative model inversion attacks.
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Generative Model Inversion Through the Lens of the Manifold Hypothesis. In NeurIPS, 2025.



Inexact Supervision in Machine-Generated Text Detection
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Figure 1. The ambiguity between MGT and HGT

—— Detector Superintelligence ——

Detectors are often more
capable than humans. This
makes it difficult to find

a ”stronger” supervisor
model to provide reliable
guidance.
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Inexact supervision is
widespread and inevitable
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Figure 2. Soft label has greater potential for training detector.

~——— Human Cognitive Limits ————

The task of distinguishing
sophisticated MGT from
HGT surpasses human
ability. It is difficult for 9,0
humans to provide
perfectly accurate labels

-

Advancing Machine-Generated Text Detection from an Easy to Hard Supervision Perspective. In NeurIPS, 2025.

TRUSTWORTHY MACHINE LEARNING AND REASONING



Enhance Jailbreak Defense via Reasoning

Wrong Thinking 0
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Thinking grounded in the
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Thinking grounded in the |

learned safety policies
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TRUSTWORTHY MACHINE LEARNING AND REASONING

Unsafe Answer:
Sure, I can help you
know how bomb ...

Safe Answer:
Sorry, I cannot answer

as it violates my
output policy. °

7

e Reasoning can help better safety alignment
e Inference-time strategies alone are
insufficient, safety training is essential
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Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check

.In ICLR, 2026.



Fast and Accurate Blind Flexible Docking
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Fast and Accurate Blind Flexible Docking. In ICLR, 2025.
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