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TML under Out-of-distribution Data
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Symptom
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N Decision boundary We propose Causal representatiOn AssistanT (COAT) using LLMs to generate useful high-level factors and
Adversary direction CasualAdyv introduce relation and crafting their measurements. COAT also adopts causal discovery methods (CDs) to find causal relations
GAIRAT treats data differently approximation (by triangle inequality) among the identified variables and provide feedback for LLMs to iteratively refine the proposed factors.
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