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Overview

TML with Noisy Labels

TML against Adversarial Examples

New Directions in TML

TML under Out-of-distribution Data

Trustworthy Federated Learning
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Trustworthy Casual Learning

We propose Causal representatiOn AssistanT (COAT) using LLMs to generate useful high-level factors and

crafting their measurements. COAT also adopts causal discovery methods (CDs) to find causal relations

among the identified variables and provide feedback for LLMs to iteratively refine the proposed factors. 

What are Adversarial Examples?

Model capacity is 

often insufficient in 

adversarial training

More attackable/guarded data are closer 

to/farther away from the decision boundary

Trustworthy Foundation Models

We propose DeepInception, a jailbreak attack method, to 

reveal the safety risks of foundation models by concealing 

the attack intention with nested instructions for LLM.

CSIDN equips each instance-label pair 

with confidence scores 

CausalNL models generative process with 

graphic causal models
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What are Label Noise?

What are Out-of-distribution Data?

We propose SFAT to pursue the adversarial 

robustness of a server model, while reducing 

the  exacerbation of the data heterogeneity.

Class-Conditional Noise (CCN) Instance-Dependent Noise (IDN)
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Geometric View on Adversarial Data Causal View on Adversarial Data

GAIRAT treats data differently

Aligning the adversarial distribution

CasualAdv introduce relation and 
approximation (by triangle inequality)
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Training an adversarially robust model in a distributed way

Aggregate a robust 

server model

Adopt adversarial 

training in local device
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Illustration of NegMining Score of NegLabel
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