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Motivation & ldea ’ Small h on Training Robustness
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**Our method 1s compatible with existing techniques.
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*Our small h is compatible

Our Contribution:

We introduce a hyperparameter step factor h into Residual
Neural Network (ResNet), theoretically and empirically
confirming its efficacy in ResNet in term of training

robustness and generalization robustness. L —_———— N —— ——— e |
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Generalization robustness refers to how well a trained model
generalizes to classify test data whose distribution may not ! 1 |
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Small h can limit the noise amplification and provide the extra capacity for filtering out the input noise. § 201 —®— depth =17
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Too small h will smooth out the useful transformations.
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